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ABSTRACT. Let E be a set of gositive measure on the unit circle. Let
feH? (1 S p =S ) and g be the restriction of f to E. It is shown that
functions g;, A > 0, can be constructed from g so that g, — { We also
characterize those functions g on E which are restrictions of functions
in H? (1 < p £ x).

In the following, the space H? (1 < p < oo) will, according to the con-
text, be either the Hardy class of analytic functions in the open unit disc D
or the space of the corresponding boundary value functions, viz the sub-
space of “analytic” functions in L?(C), C being the unit circle. If E = C
has positive measure then it is well known (see [3]) that a function in H?
cannot vanish on E without being identically zero. Thus, theoretically
at least, f € H? is uniquely “‘determined” by its values on E. In the present
work we address ourselves to the problem of recovering functions in H?
from their restrictions to E. Theorem I gives an explicit constructive solu-
tion to this problem. The allied problem of characterizing the restrictions
to E of functions in H? (1 < p < o0) is solved in Theorem IL To the best
of our knowledge, the only known results relating to these problems are
due to the author [4] where the case p = 2 is dealt with.

THEOREM I. Let E = C with m(E) > 0. Suppose that 1 £ p < oo, fe H?
and that g is the restriction of f to E. For each A > 0 define analytic func-
tions h,, g, on D by

1 €+ z
h;.(Z) = exp{— 4—'7'1_- lOg(l + }u) J; ew__de}, ze D,
_ 1 h,(w)g(w) dw
gi(2) = Ahy(2) ZniJ‘E w—2z zeD.

Then as A — oo, g, — f uniformly on compact subsets of D. Moreover for
1 < p < o we also have||g; — f]|, > 0 as A - .

THEOREMIL Let E = C with 0 < m(E) < m(C). For ge L'(E) let g, be
as in Theorem 1. (a) If 1 < p < oo then a function g € L¥(E) is the restriction
to E of some fe HP if and only if sup; » of|gl|, < 0. (b) A function g € L*(E)
is the restriction to E of some fe H® if and only if sup,, , lim sup,_, ||gil|,
< 0.
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The proof of Theorem I will be based on a series of lemmas. First we
recall some elementary properties of Toeplitz operators on H? spaces (for
details in the special case p = 2 see [1], and for the generalcase 1 < p < 00
see [5]). Let 1 < p < co. For each ¢ € L™, the Toeplitz operator T, is
defined by T,f = P(¢f), f€ H?, where P is the natural projection of L?
onto H?. We need the following facts: (i) ||T,|| < C,||9||, (i) if ¢,y € L®
and if either e H® or y € H®, then T, = T,T,,. This latter fact immedi-
ately yields

LeMMA 1. If b, 1/he H® and ¢ = |h|~2, then the Toeplitz operator T, is
invertible and T, ! = T, T;.

PROOF. T, T;To = T(GTyp)Tim = T, Ty = 1, etc.

Let x; be the characteristic function of the set E and let for A > 0,
@, =1+ Axz. Then the function h, defined in Theorem I satisfies,
1/@, = h;h,. Also h,, 1/h, € H*. Thus by Lemma 1, we have

LemMa 2. T, is invertible and T, ' = T, T; .

LEMMA 3. Define for each a€ D, e z) = 1/(1 — az),ze D. Then e, € H?,
1sp= oo and if T, is treated as an operator on H” (1 <p < oo), we
have T, le, = h,l(a)h,le

Proor. For each ge H? (g = p/(p — 1)), we have (T;, e,,8) = (e, h:g)
= h)(a)g(a) = hy(a)(e,, g)- Thus T; e, = h)(a)e,. An appeal to Lemma 2
finishes the proof.

LEMMA 4. Let K be a compact subset of D and 1 < p £ . Then as
A > 0, ||hy(a)h;e,||, — O uniformly for ae K.

ProoF. We note that ||hy||., <1 and |hy(a)| < (1 + 4)™ where a > 0
and o depends on |a|.

Let now S be the Toeplitz operator on H? (1 < p < o0) corresponding
to the characteristic function y of E. Then since I + }.S =T, ,I + AS)~!
exists by Lemma 2. Also by Lemma 4, ||(I + AS)™'e,[, =0 as 4 - co.
By Lemma 2 and fact (i) about Toeplitz operators we also have

I+ 487" = |7, 5,

s [ml%Cp < G

Noting that {e,:a€ D} is a fundamental set in H?, we therefore obtain
(cf, e.g., [3, p. 55]) that ||(I + AS)~'f|, — O for every f € H?. Noting that
for fe H ,(I + AS)"f = f — A(I + AS)™1Sf, we get

LemMA 5. If 1 < p < o0 and f € HP, then as A — o,

A + 48)7Sf — f|, = ©.
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The proof of Theorem I (for 1 < p < oo) will be complete if we show that
g, = A + AS)”'Sf. But this is routine: For ze D,

(M + 285)"'Sf,e)) = MSf, (I + AS)™'e,) = Myef, (I + AS)"'e,)
= Mf, (I + A8)"e)p = A S, hi(2)hze.)

In the above chain of equalities, the first is a consequence of the fact that
(I + AS)* is the operator (I + AS) on H? (g = p/(p — 1)) and the last
results from Lemma 3. The notation ( , )z denotes the “inner product”
over the set E. Now it can be readily checked that A(f, h,(z)h,e,)g is the
same as the defining expression for g,(z).

The case p = oo is easy. If f € H® then since f is also in H, by the pre-
ceding, |g; — f||» — 0 and hence g, — f uniformly on compact subsets
of D

Turning to the case p = 1, let fe H!. For 0 < r < 1, define f, by f,(¢’%)
= f(re’). Then as is well known, || f|, < ||f]; and || f, = f]; > O as

r — 1. Let us define, for each 4 > 0, f, ; by

o) = 0 5 [ RO,

zeD.

Then we see that, for every compact set K < D, the following statements
hold uniformly in K:(1)f,, > g,asr—=1,2)f, > fasr->1,3) /.~ f;
as A — oo. The less trivial of these statements, viz. (3), follows because
f.€ H? and the case p = 2 of the theorem applies. If we show further that
the convergence in (3) is also uniform for r in (0, 1) then we can conclude
that g, — fas A — oo uniformly in K and the proof of the theorem for
p = 1 will be complete. For this purpose, remembering that fe H? we
have for each ze K,

fr2(2) = fi(2) = (U + AS)7'Sf, — fr,e) = (I + A9)7f,, e)
= (f;-’(] + A'S)—lez) = (fr’hl(z)hlez)'

Hence we obtain

1f(2) = £.(2) = ”fr”l”hz(z)h;.ez”oo = ”f”l“;il(z)hlez“oo'

The last term is independent of r and Lemma 4 (p = o0) does the job.

Proor or THEOREM II. The “‘only if” parts are evident from Theorem I.
As for the “if” part in (a), the boundedness of {||g,||,} together with the
weak* compactness of closed balls in H? provide us with a sequence
4, = oo such that g, converges weak* to some fin H”. Let g, € L?(C) be
defined by setting g, = g on E and g, = 0 otherwise. Denote Pg, by g.
From the discussion following Lemma 5, it can be seen that

g1 =Ml + A5)7'g.
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Thus for every ke H? (q = p/(p — 1)), (A(I + A,S)"Sg, k) = (g,,, Sk)
— (f, Sk) = (Sf, k), while by Lemma 5, the first of these inner products
converges to (¢, k). Hence § = Sf. This means that the Fourier coefficients
((f — g)xg) (n) are zero for n 2 0. In other words, (f — g,)% € HP.
Since m(C\E) > 0, we must have f = g, on E.

For proving the *if”” part in (b) we need to make just two observations.
First, ge L*(E) implies g, e H? for each p < co and hence part (a) gives
[ belonging to H” for all p < oo and such that g is the restriction to E of
/. Secondly, ||g,||l, = || /], as A= o and | f], = | fllo as p = . The
details are left to the reader.

REMARKS. 1. In the proof of Theorem I, we did not use the F. & M.
Riesz Theorem. We thus obtain a new proof of the statement: if f € H?
(1<p= ).f=00nE mE)>O0,thenf =0.

2. Theorem I points out a way which enables us to draw conclusions
about the properties of a holomorphic function from the knowledge of its
values on an arc. It is possible to obtain results parallel to the classical
Cauchy theory where we now have integrals over a curve which may not be
closed. Details of these and other related results will be published else-
where.
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