NONSEPARATING FUNCTION ALGEBRAS

BY L. Q. EIFLER

Communicated by Felix Browder, December 29, 1971

Let A be a function algebra on X (compact). We say A is a separating algebra on X if for each closed subset S of X and for each $x \in X \setminus S$ there exists f in A such that f(x) = 0 and f does not vanish on S. We say that A is essential on X if for each open subset U of X there is a continuous function $f \notin A$ such that f vanishes on X/U. Csordas and Reiter asked [2] if there exists a nonseparating, essential algebra A on a (connected) space X for which X is the maximal ideal space of A and also the Šilov boundary of A. We give an example of such an algebra and simple examples of non-separating algebras.

Given a compact subset K of C^n , let P(K) denote the uniform closure in C(K) of the polynomials in z_1, \ldots, z_n . An easy application of Hurwitz' theorem [1, p. 176] shows that the first three of the following algebras are nonseparating.

EXAMPLE 1. Let $\Delta = \{z : |z| \leq 1\}$. Then $P(\Delta \times \Delta)$ is nonseparating since $f(\Delta \times \Delta) = f(\{(z, w) : |z| = 1 \text{ or } |w| = 1\})$ for each f in $P(\Delta \times \Delta)$. Also, $\Delta \times \Delta$ is the maximal ideal space of $P(\Delta \times \Delta)$.

EXAMPLE 2. The algebra $P([0, 1] \times \Delta)$ is nonseparating since $f([0, 1] \times \Delta) = f(\{(t, z): t = 0 \text{ or } |z| = 1\})$. Also, $[0, 1] \times \Delta$ is the maximal ideal space of $P([0, 1] \times \Delta)$.

EXAMPLE 3. If A is a separating algebra on X = M(A) and if B is a function algebra on X containing A, then B is separating on X but not necessarily separating on M(B). Let B denote the uniform closure in $C(\Delta)$ of polynomials in z and |z|. Then $P(\Delta) \subseteq B \subseteq C(\Delta)$. One can embed B into $P([0, 1] \times \Delta)$ by setting F(r, z) = f(rz) for $0 \leq r \leq 1$ and $|z| \leq 1$. Now one can see that the maximal ideal space of B is $[0, 1] \times \Delta/\{0\} \times \Delta$ and so B is nonseparating on its maximal ideal space.

EXAMPLE 4. Let $S^2 = C \cup \{\infty\}$ and let $D = \{z : |z| < 1\}$. Let

$$B = \{ f \in C(S^2) : f \text{ is analytic in } D \}.$$

Then $M(B) = S^2$ and $f(S^2) = f(S^2 \setminus D)$ for each f in B. One easily checks that S^2 is the maximal ideal space of B. Fix f in B and assume f does not vanish on $S^2 \setminus D$. If f has a zero in D, then there exist $\alpha_1, \ldots, \alpha_n \in D$ such that $g(z) = f(z) \prod_{k=1}^n \frac{z}{(z - \alpha_k)}$ belongs to B and vanishes only at 0. Given $\infty \ge r > 0$, define $\Gamma_r(\theta) = g(re^{i\theta})$. All of the curves Γ_r are homotopic

AMS 1970 subject classifications. Primary 46J10.

Key words and phrases. Function algebras.

to each other in $C \setminus \{0\}$ and Γ_{∞} is constant. For r small, the winding number of Γ_r , around 0 is equal to the order of the zero of g at 0. Hence, $f(S^2) = f(S^2 \backslash D).$

EXAMPLE 5. We now construct an algebra A on a space X such that A is nonseparating and essential and X is the maximal ideal space and Šilov boundary of A. (1) Choose $z_i \in C$ and $r_i > 0$ such that $\sum r_i < \infty$, the discs $D_i = \{z : |z - z_i| < r_i\}$ are mutually disjoint and contained in $\Delta = \{z: |z| \leq 1\}$, and $Y = \Delta \setminus \bigcup_{i=1}^{\infty} D_i$ has no interior. (2) Let R(Y) denote the uniform closure in C(Y) of the rational functions with poles off Y. Then R(Y) is essential and Y is the maximal ideal space and the Šilov boundary of R(Y). (3) Let B be a nonseparating function on a compact metric space K' where K' = M(B) [Examples 1-4]. Let K be a Cantor set of measure zero in $\{z: |z| = 1\}$ and let ρ be a continuous map of K onto K'. Now set $A = \{f \in R(Y) : f \in B \circ \rho\}$. Since K is a peak interpolation set for R(Y), the space Y/ρ is the maximal space of A. (See [3, Remark 2.2].) A is essential and Y/ρ is the Šilov boundary of A. Finally, A is nonseparating.

REFERENCES

L. V. Ahlfors, Complex analysis. An introduction to the theory of analytic functions of one complex variable, McGraw-Hill, New York, 1953. MR 14, 857.
G. Csordas and H. Reiter, Separating function algebras (submitted).

3. I. Glicksberg, A remark on analyticity of function algebras, Pacific J. Math. 13 (1963), 1181-1185. MR 27 #6151.

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803.