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Let k be a field, K/k a finite Galois extension, G a finite group isomorphic 
to G = Gal(X//c), y:G -> G an isomorphism and S: 1 -* JV -+,E -+eG -> 1 
an exact sequence of finite groups. The embedding problem 

P = P(K/fc,£,y) 

is to construct an extension L/K such that L/k is Galois, and such that 
there exists an isomorphism /?:£ -* E, where £ = Gal(L//c), such that 
y - ResL/K = e(i. L is called a solution field, j? a solution isomorphism, and 
the pair (L, fi) a solution, to P. At times we only require /? to be mono-
morphic; in such a context (L, /?) is called an improper solution, and if 
j? is epi, (L, /?) is a proper solution. 

1. Reduction to solvable groups and split extensions. Let 1 -+ N ->,E 
-•e G -• 1 be an exact sequence of groups, and let U be a subgroup of E 
such that 1/ • i(N) = £. Let E* be the semidirect product ([/, iV), where the 
action of U on JV is given by nu = i" 1(u~ 1i{n)u\ for n e JV, u e U. Let the 
mapping rj : E* -• E be defined by */((M, n)) = wi(n). One verifies easily that 
rj is an epimorphism with kernel U n iN, and the diagram 

1 -+ N -> £* -> U -» 1 

II I " I e 

1 - N - E - G - > 1 

commutes and has exact rows, where £*((M, n)) = M for (M, n) G £*, 
i*(n) = (l,n). 

Let an embedding problem P = P(K/k, S, y) be given and let C/ be as 
above. We define the embedding problem Px = P(X//c, S^y) where Sj 
is the sequence 1 -• i~l{U n iN) -•, 1/ -•e G -> 1. Suppose Pj has a 
solution (Lupl). We then define the embedding problem 

P ^ P ^ / Z c Z ^ ) 

where Z2 is 1 -* JV -•,• £* -•8« C/ -+ 1. Suppose P2 has a solution (L2, j?2)« 

^IA/5 1970 subject classifications. Primary 12A55, 12B15, 20G40. 
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Let L be the fixed field of the kernel of t]P2:E2 -> E, let E = Gal(L//c), 
N = Gal(L/K), and let /? be defined by means of the commutative diagram 

E2"^E* 
|Res |" 
E rE 

One verifies that (L, /?) is a solution to P, hence 

THEOREM 1. If the embedding problems Pl9 P2 have successive solutions, 
then so does P. 

A GROUP-THEORETIC LEMMA. Let E be a finite group, N a normal sub­
group. Then there exists a subgroup UofE such that UN — E and U n N 
is nilpotent, and such that ifE/N is nilpotent, then U is nilpotent. 

Indeed, one shows that a minimal subgroup U such that UN = E does 
the trick. Theorem 1 and the above lemma yield 

THEOREM 2. Any embedding problem P = P(K/k, S, y) can be reduced to 
the succession of two embedding problems 

Px = P{KJku S l5 yx), P2 = P(K2/k2, Z2, y2) 

(where E£ is the exact sequence 1 -• Nt -% Et - ^ Gt -> 1), in which 

in Px : Nx is nilpotent ; 
ifGx is solvable, then Ex is solvable; 
ifG1 is nilpotent, then Ex is nilpotent; 

in P2: 2 2 splits. 

2. On Ikeda's theorem. Theorem 1 furnishes a proof of the following 
theorem of Ikeda ([1], [2]): let fe be a number field, P = P(K/k, S, y) an 
embedding problem with JV abelian. If P has an improper solution, then 
P has a proper solution. 

Let {Ll9px) be an improper solution to P. Setting U = Pi(E), where 
E = Gal(L/fe), we have Ui(N) = E. Moreover (Ll5 p^ is a proper solution 
to Px = P(K/k, Si, 7), with Px defined as in Theorem 1. In P2 (defined as 
in Theorem 1), Z2 splits and N is abelian. But Scholz [3] proved in 1929 
that every embedding problem P(K/k, I , y) with fc a number field, N 
abelian, and Z split, has a (proper) solution. Ikeda's theorem now follows 
from Theorem 1. 

3. Irreducible embedding problems. Let an embedding problem P 
= P(K/k, I , y) be given. Suppose H is a normal subgroup of E, 
H niN = 1. Consider the exact and commutative diagram 
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1 -> JV >E >G >1 
II * i e i 

1 Ie Ie' 
1 _ JV -> E/H -> G/H -* 1 

i' e' 

where 0,9' are canonical, and i\ e' are defined so that the diagram com­
mutes. There results a "reduced" embedding problem P' = P{K'/k, 2', y') 
where X' is the fixed field of y" ie(H\ E' the bottom row of the above dia­
gram, and y':G/y~1eH -> G/sH is induced by y. 

THEOREM 3. P has a solution if and only if P' has a solution (L', /?') such 
that L' n K = K'. 

Suppose now that the center Z(N) of JV is trivial. Set H = ZE(iN), the 
centralizer of *JV in £. Then H niN = I and £' = £/H is isomorphic to 
a subgroup of the automorphism group Aut JV of JV, where the isomor­
phism rj:E' -• Aut JV is defined by the equation ri(e'){ri) = i'~\e,^1i\n)e'\ 
é eE\ne JV. Applying Theorem 3, we have 

THEOREM 4. If Z(N) = 1, then any embedding problem P = P(K/k, 2, y) 
reduces to an embedding problem P = P(K'/k, 2', ƒ ), w/zere k ^ K' ^ K, 
where 2' denotes an exact sequence 1-*N-+E'->G' -*l in w/nc/i 
£' c Aut JV, and w/iere £/ie solution field is required to satisfy the condition 
L' nK = K'. 

P' is called an irreducible embedding problem. 
REMARK. Schreier's conjecture states that the outer automorphism 

group of a finite simple group is solvable. If P = P(K/k, 2, y) is an embed­
ding problem with JV simple (nonabelian), Theorem 3 reduces P to the 
case G solvable, provided Schreier's conjecture is correct. But then 
Theorem 2 reduces P to the pair Pi9 P2 in which E1 is solvable and 22 

splits. Of course it is required that LUL2 satisfy the appropriate dis-
jointness condition of Theorem 4. 

4. Localizability of an embedding problem. Let k be a number field, 
K/k a finite Galois extension. Let g be a prime of fe, and assume k is con­
tained in the completion kfl of k at g, and that kQ is contained in an alge­
braic closure £fi of fcg. Let aK be an embedding of K into £fl extending the 
inclusion map of k into UQ, and inducing a prime p of K. (r̂  induces an 
isomorphism <r£ : G(Kp//cg) -> G(p), where Kp =_fc8 • ^(K), G = Gal(K/k), 
and G(p) is the decomposition group of p in G. (T$ is given by c^(0)(x) 
= ^ ^ ( x ) , Ö e G(Kp//cg), x e X. 

Let an embedding problem P = P(K/k, 2, 7) be given. There is induced 
a local embedding problem Pp = P(Kp/kQ, 2p, yp), where 2P is the exact 
sequence 1 -> JV -•, Ep -+£p Gp -> 1, in which Gp = y(G(p))9 Ep = ep"

 X(GP), 
ep = e|£p,andyp = yof. 
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Suppose (L, P) is a solution to P. Let aL be an extension of aK to L, 
q the prime of L induced by <rL, and let Lq = fcfl<7L(L). Then (Z^ /?q) is an 
improper solution to Pp, where /?q = perlât defined analogous to a%. 
By the localization hypothesis J?(P) we mean the following: let an em­
bedding problem P = P(K/k, E, y) be given, k a number field. Let S be a 
finite set of primes of fc, and let there be associated with each g e S a prime 
p of K dividing g together with an embedding aK defined as above. Let 
Pp denote the local embedding problem induced by P for each g e S. 
Suppose that for each g e S, the set 3^ of improper solutions to Pp is not 
empty. Now let there be chosen from each 5̂ 8 an improper solution 
(Lp, Pp). Then, there exists a finite Galois extension L/fc, L => K, such that 
Gdl(L/K) s N, and the following hold: (i) for each g e S, there exists an 
extension aL of aK to L such that fcn<rL(L) = Lp, and (ii) there is an iso­
morphism <x:N -* N (N = Gal(L/K)) such that for each g e S, the diagram 

G(L*/Kp) — ; ; N(q) 

!*' 1* 
N ============ JV 

is commutative, where q is induced by (TL, a
p = i'1 <>pp IncLP/Xp, and 

JV(q) is the decomposition group of q in JV. 
If J5f (P) yields a solution field L to P, then P is called localizable. 

THEOREM 5. Every irreducible embedding problem in which N = An, the 
alternating group on n letters, n ?= 6, n > 4, is localizable. 

EXAMPLE. Let p0,p be rational primes, v a positive integer such that 
p\Po - 1> P2 /f Po - 1; for example, p0 = 7, p = 3, v = 1. Let q = />£> 
AT = PSL(p, q\ the projective special linear group of degree n over GF(q), 
E = PGL(p, q\ the projective general linear group. Let E be the associated 
canonical exact sequence. Let fc = Q(Ç\ Ç a primitive eth root of 1, where e 
is the order of E9K = k{a1/p), where, by virtue of the Approximation 
Theorem, a is chosen to have the following properties: 

1. a is congruent to 1 mod g for every divisor g of e in fc which is prime 
top. 

2. a is congruent to 1 mod gffl for every divisor g of p in fc, where tfl is 
chosen sufficiently large so that every element which is congruent to 
1 mod grn is the pth power of an element of fc. 

3. a is congruent mod g0 to a root of unity in fcfl which is not a pth 
power, where g0 is any prime different from all g in 1 and 2 above. 

Because of the way a is chosen, all the divisors of e in fc split completely 
in K. Finally, let y be any isomorphism from G = Gal(X/fc) onto G = E/N. 
Then, the embedding problem P = P(K/k, E, y) is not localizable. 

REMARK. The only general method known for constructing extensions 
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K of an arbitrary number field k with arbitrary solvable Galois group G is 
that of Safarevic [4]. All the extensions K/k that he constructs have the 
property that every prime divisor of the order of G in fc splits completely 
in K. The example above shows that Safarevic's method, together with the 
localization hypothesis, is not sufficient to solve the inverse problem of 
Galois Theory. 
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