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Let k be a p-adic field and let G be a reductive group defined over k.
Let G be a semigroup in G, i.e. a multiplicative subset with the same unity
as G We shall assume that there exists an open compact subgroup A of
G which is contained in G. Let %(G, A) be the free Z-module generated by
the double cosets of G modulo A, with a product defined as in [3, Lemma
6]. We have an associative ring with unity which we shall call the Hecke
Ring of G with respect to A. Let A, be a normal subgroup of A satisfying
our conditions H-1 and H-2 of §1. Our purpose is to find generators and
relations for 2(G, Ay) = #. There exists a finitely generated polynomial
ring Z[G] which together with the group ring Z[A/A,] generates Z;
moreover Z is a Z[A/A,]-bimodule having Z[ D] as basis. Our hypothesis
H-1 and H-2 are verified for the principal congruence subgroups of most
of the classical groups considered in [2].

We thank Mr. J. Shalika for the helpful discussions during the prepara-
tion of this work and also for pointing out some hopes that this might bring
in solving Harish-Chandra conjecture on the finite dimensionality of the
irreducible continuous representations of these rings.

1. General results. Let T be a connected k-closed subgroup of G con-
sisting only of semisimple elements, and N* and N~ be maximal .-
closed unipotent subgroups normalized by T. We set N* = N* nA,
and U~ = N~ n A We shall now state our first condition:

Condition H-1. There exists a finitely generated semigroup D in T
such that G = ADA (disjoint union), and for all de D we have dU*d ™!
cUtandd ‘U dc U".

We turn now to our second condition. We let A, be a normal subgroup
of A and we set Uj = U* n Ay and Uy = U™ n A,. We shall assume
that T-N* n Ay = (Tn Ay Ug.

Condition H-2. There exists a semigroup D in T such that A, = Ug VU,
for a certain subgroup V of A, normalized by D, and for all d in D we
have dU{d ! =« Ui andd™'Ugsd < Uj.

Let us denote by 1 the unity of # and by gthe double coset A, gA,. We
shall denote the product in Z by .

THEOREM 1. Condition H-2 implies that D = AyDA, is a semigroup in
G and R(D, A,) ~ Z[D].
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PRroOF. Our condition implies that for all d, d, € D, we have Agd;Aod A,
= Ayd dyAy, or di % d, = m-dd,, with me Z, and it remains to prove
that m = 1. From H-2 we can write

AodAo = U {Aodujl_] = 1,-..,w(d), uje U(; }.

Set v; = dud™' € N™. If Agdu; = Ad, for some d, in D, then we have
o; = 1 and we may replace d, by d. This is equivalent to the existence of
ve A, such that vd = du;. Now we set AgdiAo = ) Aodu’,i = 1,2, and
we recall that m is the number of pairs (i, j) such that

AOdle = Aodlu('”d u(~2)

We have vd,d, = d,d,#{"u® = d,u{"v{?d,, for some a" in A,, and this
implies #{® =1 and consequently we have #{V = 1. Therefore m = 1.
Q.E.D.

THEOREM 2. The conditions H-1 and H-2 with the same D imply the
finite generation as a ring of #. Moreover R is a Z[A/Ay)-bimodule having
Z[D] as a basis.

PROOF. We let {d,, ..., d,} be a set of generators for D. Let {ay,...,a,}
be a complete set of representatives for A modulo A,. Normality of A,
implies that o;do; = &, * d * &;. Also we have &&; = & * d; and for any
d,d e D,dd = d+d. Now H-1 implies that for any ge G there exist
;, ;€A and d e D such that g = a;da; and also that for any h in A and
any 1 <i,j<r, d;xhd; = d, *ﬁ*a = dh*d; is a linear combination
with coefficients in Z of the elements oﬂ_ Therefore the number of
generators of & is r - hy, where hy is the m1mma1 number of generators of
A/A,. QE.D.

2. Relations. We observe that Theorem 2 gives us some relations
among the generators of #. Let us introduce some notation; for fixed
de D, we shall let L(d) (resp. R(d)) be the set of {&|a€ A, ad = do, for
some o' € A (resp. da = o«’d)}. L(d) and R(d) are subgroups of A. We denote
by R'(d) and L'(d) the respective subgroups of R(d) and L(d) consisting
of those elements & such that & can be chosen as 1. It is easy to verify that
R(@d) = {&aed ' UsdnA} =d TAgldnA and L'(d)= {ala lies in
dUsd ' n A} = dAqd~T A A. We have the following straightforward
lemmas:

LEMMA 1. @ *d* &, = d;*d = d, if and only if d = &', d;€ &; »L(d) and
&, € R'(d) t/7*oz,,oc ozjma a*gl'xforsomeweA

LEMMA 2. Suppose that for all the generators d of D we have dUgd ™!
< U™. Ifd and d' are generators of D and if g € A, then

dvxgd =0(d, g)xaxd, »a,
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where o, o € A and d, € D are such that dgd' = ad, o', and 0(d, g) = m - (sum
of all elements of L'(d) W, where W is the subgroup of L'(d) consisting of all
@ such that & * dgd = dgd'). m is not greater than the order of the group

gxL'(d)*g~ ' nR(d).

Finally, we would like to observe that £ has an involution induced by
g — g~ ! in the case where G is a group. If, moreover, there exists 6 € A
such that for alld e D, d~! = 0~ 'd0, then the mapping & — a0~ ! induces
the isomorphisms R'(d) ~ L'(d) and R(d) ~ L(d).

ExaMPLES. Let K be a division algebra central over &, O be the ring of
integers of K, p its prime and = a fixed generator of p. Given a € K we shall
denote by ord(a) the power of # in a. We let q be the number of elements
in O/p. For any positive integer m, O/p™ has q™ elements. Let S be a subring
of K and let M, (S) denote the ring of all n by n matrices with entries in S;
ifge M,(S)and 1 < i,j < n, then (g);; will denote the (i, j)-entry of g and
if we set (g);; = gi;, we write g = (g;;); by e;; we denote the matrix having
1 as (i,j)-entry and zero otherwise, and E, or simply E will denote the
identity of M,(S). GI,(K) is the group of units of M,(K).

Case 1. G = GI,(K). We let G = GI,(K), T = T, = diagonal matrices in
G, N*(resp. N7) the group of all unipotent upper (resp. lower) triangular
matrices in G, A = Gy = GI,(D). Let D, = {deT|d = diag[n",...,n"™],
ry 2 r, 2 2 r,}. Itisclear that D, satisfies H-1. Forany r =21 weset A,
= A, = {ge Alg = 1 mod p’} = the rth congruence subgroup of A. We
have T-N* nA, =(TnA,) - U;. Welet V=TnA, and V =T A.
Condition H-2 will follow from the following lemma:

LEMMA 3. A, = UgVU; = U VU;g.

PROOF. Let g€ A,. As ¥V normalizes both Ui and U; we may assume
that all diagonal entries of g are 1. If we consider g’ = (E — g;.e;,)8,
i # n, then E — g,e, € U; and (g');,, = 0. These operations will reduce
to zero the nondiagonal entries of the last column of g. Now it suffices
to transpose the resulting matrix, repeat the operation and apply induc-
tion. Q.E.D.

REMARK. Let d € D be such that r, = 0. For any # eL'(d) we can choose
a representative such that d”'vd = u = (u;)e U~ where u; = 0, for
i<j, uy=1 for all i, and u;; = q;n" with ord(a;;) < r; — r;. Hence
od) =q"m=Y,.;(r;—r). Also d"! =046, § = e,, + ‘- + ¢,, and
for the generators of D, d”'A,d and dA,d™ ! are contained in A, _ |, because
r, =1

Finally we would like to remark that in the case n =2 and K=k
we have m(Z(u)w, d) = 1 if u is a unit, and equal to g, otherwise, where
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z 0 01 10
d=(0 1)’ w=<1 0)’ Z(“)=<u 1)‘

Also if u is a unit, d * Z(uywd = dZ(u)wd. This well determines the multi-
plication in £.

The case where G' = SI,(k), and D, A, A,, V being the respective inter-
section of the corresponding groups with S/,(k), is covered by our Theorem
2.

Case I1. Unitary groups. Let K denote either k&, or a quadratic extension
of k, or else a quaternion division algebra over k. Let p denote respectively,
the identity, the nontrivial automorphism of K over &, and an involution
of K. Clearly p can always be extended to an involution of M,(K). Let
h =0 and let n = 2p + b; we subdivide every matrix ge M,(K) into 9
blocks g = (g;;), i,j=1,2,3, in such way that g,;,g3;€ M,(K) and
822 € My(K). Let O be the ring of integers of K, and fix an H e M (D),
such that H* = yH,y = +1,H = (h;), hy3 = yhy; =0 =e;, + - + ¢,4,
h,2 = V and h;; = 0 otherwise, where V corresponds to an anisotropic
form, if b# 0. We let G be the connected component of the group
{g e GI,(K)|g?Hg = u(g)H, where p is the multiplier}, and we let G, be
the correspondent group of V. We let

T = {he G|h = diag[z, ho, u(ho)0(z*)~ 6], ho€ Gy and z€ T},

and we denote by N*, N~, A and A, the intersection of the corresponding
group in GI(K) with G. We let ¥ = T n A, which clearly normalizes
U§ and Uj.

LeMMA 4. A, = U VU;.

PrOOF. Let g = (g;;) € A,. We can apply Lemma 3 to g;; and we can
write g;; = myhyu,. If we denote by n = diag[0(nf)~'60,E,n,],h=
diag[6(h?)~'0,E, h,] and u = diag[0(u4) '6,E,u,], then ne U{,heV,
and ue Uy and replacing g by h~'n"'gu~! we may assume that g;; = E.
We take now g’ = (gj;)e Uy with g}, = y0g5,V, g5 = y0g5:0 and
853 = —g&,3 and g” = diag[E, hy, E] in ¥, for a convenient h, € G,; hence
g'gge U,. Q.E.D.

Now we consider A as in [2, §9], [=0, D = {n'|reA} and D’
= {deAlu(d) = 1}. We take G = G and G’ = {ge G|u(g) = 1} and con-
sider their respective subgroups A, A’, V, V', etc. It can be easily checked
that in all the cases discussed in [2, §97, our Theorems 1 and 2 remain valid
for (G, A’) and for (G, A) with the exception of the case (O)n = 2p. For G’
we also have the extra assumptions of Lemma 2 and we also have a
0 =(0;); 0,5=7903, =0, 0,, =E, 6;; =0 otherwise, such that d~*

= 0d6, n* = yn.

Closing this note we shall make two remarks:
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ReMARK. For the adjoint representation of a Chevalley type group we
have condition H-1 by [1].

REMARK. Let # be a Hilbert space and let () be the algebra of all
bounded operators on J#. Suppose that there exists a finite group G of
unitary operators and a finite set of commuting operators D,,...,D,
all in #(5¢) such that all D;’s are not necessarily normal. Let 4 be the weak
closure of the algebra generated by 1 and all the D;. If we assume that
every A € #(#) can be written as a finite sum of g;B;;g;,g;,g;€ G and
B;je #, does this necessarily imply that the dimension of J# is finite?
The positive answer of this question together with our Theorem 2 will
imply Harish-Chandra’s conjecture in these cases.
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