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1. Introduction. In this paper we consider sequences {y,} of real valued
functions defined on an interval I. We are interested in finding conditions
which when satisfied by the sequence {y,} guarantee the existence of a sub-
sequence of {y,} which converges pointwise on I. With this in mind we
make the following definition.

DEFINITION 1.1. Let f:1 —» R and consider the set 2 of all finite non-
empty partitions P = {x,X,,...,x,} of I where n 21 and x; < x,
< -+- < x,. We denote by T(f) the oscillation of f on I and define it by

T(/) = sup{_i £ (= 1fx) > O Vi
Pe? (i=1

or (—1)f(x;) < 0Vior (= 1)f(x;) = 0 Vi}-

For a function f which is nonnegative on I the oscillation of f on I, T(f),
is the supremum of f on I. It is not the case, however, that the set of f for
which T(f) is finite forms a Banach space with norm T(f) since closure
under addition is not satisfied. It is also not the case that the set of f for
which T(f) is finite forms a metric space with metric given by d(/, g)
= T(f — g) because the triangle inequality is not satisfied.

Our main result, for which we give a number of applications later, is the
following.

THEOREM 1.2. Let {y,} be such that y,:1 - R. If T(y, — y;) = M for all
k, j then { y,} contains a subsequence which converges pointwise on I.

The original motivation for this theorem comes from the study of
boundary value problems. In [3] the author showed, among other things,
that if {y,} is a uniformly bounded sequence of continuous real valued
functions defined on an interval I having the property that there exists a
positive integer N such that y, and y; are not equal at more than N values
of x for k # j then y, contains a subsequence which converges at every
point in I. This result is a corollary of Theorem 1.2. A more complete
description of the connection between such convergence theorems and the
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study of boundary value problems may be found in [3] along with a list of
references.

2. Preliminary results. We begin by stating a known result due to
Ramsey which we will refer to repeatedly. This result and its proof may be
found in [1, Theorem A] or [2, Theorem A, p. 82].

THEOREM 2.1. Let " be an infinite class, u and r positive integers; and let
all those subclasses of T which have exactly r members, or, as we may say, let
all r-combinations of the members of T be divided in any manner into u
mutually exclusive classes C; (i = 1,2,...,u), so that every r-combination is
a member of one and only one C;. Then, assuming the Axiom of Selections,
I" must contain an infinite subclass A such that all the r-combinations of the
members of A belong to the same C;.

COROLLARY 2.2. If { fi} is any sequence of real valued functions defined
on an interval J then either there is a subsequence {h;} of { fi} such that {h;}
is a monotone sequence on J or else there is a subsequence {h;} of { fi} such
that if i # j there are t, € J depending on i, j with hy(t) > h(t) and h;(t)
< hl(t)‘

PROOF. If there are only finitely many functions in { f;} which are distinct
on J then infinitely many are identical on J and we are done. Thus we may
assume there are infinitely many functions in { f;} which are distinct on J
and, by picking a subsequence if necessary, we may assume all the f, are
distinct. Let u=r =2 and T = {fi,}. Let C, = {{fi. fi}:k #Jj, £ilt)
S/ Veed or flt) 2 f(t) VieJ} and C, = {{fi.fi}:k #j A
> f{t) for some teJ and fi(r) < f{(r) for some 7€ J}. The result now
follows from Theorem 2.1.

COROLLARY 2.3. If {f;} is any sequence of real valued functions defined
on an interval J and ¢ > 0 is any number then either there is a subsequence
{h;} of { fi} such that, for i # j, |h(t) — hi(t)| < € for all t € J or else there is
a subsequence {h;} of {fi} such that, for i # j,|hj(t) — h(t)| = € for some
t € J depending on i, j.

PROOF. As in the proof of Corollary 2.2 we may assume the f, are all
distinct on J or we are done. Let ' = {fi,}, u=r =2, C, = {{fi. f}}:
k#j, 1) = fol <e Vted}, Co={{fi. fi}: k#J, D) = i) 2«

for some t € J}. The result now follows from Theorem 2.1.

3. Proof of Theorem 1.2. For x € I we have |y (x)| = |yi(x) — »{(x)l
+ |y1(x)] £ M + |y,(x)| so the sequence {y,} is pointwise bounded and
hence any monotone subsequence of {y,} is convergent.

Let {J;} be an enumeration of all the nonempty open intervals con-
tained in I with rational endpoints.
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It follows from Corollary 2.2 applied to J, that either there is a sub-
sequence of { y, }, again denoted by { y,}, which is monotone and convergent
on J; or else there is a subsequence of {y,}, again denoted by {y,}, such
that, for k # j, yi(t) > y;(t) and y,(r) < yj(z) for some t, 1€ J,. We now
repeat the process described in the previous sentence consecutively on the
intervals J,, J3,... and then take the diagonal subsequence, denoted by
{y.} again. This sequence has the property that on any of the intervals J;
it is either monotone on J; for k sufficiently large and hence converges on J;
or else for every k + j sufficiently large there are t, 7 € J; such that y,(t)
> y;(t) and y,(7) < y;(2).

Now using J, and ¢ = 1 it follows from Corollary 2.3 that either there
is a subsequence of {y,}, again denoted by {y,}, such that, for k # j, |y(t)
— yi(t)) < e =1forall teJ, or else there is a subsequence of {y,}, again
denoted by {y,}, such that if k # j there is some te€J, for which |y(t)
— yj(t)) = ¢ = 1. We now repeat this process consecutively on J; using
e=1/2,e =1/3,...,6 = 1/n,... and then take the diagonal subsequence,
again denoted by {y,}. This sequence has the property that for J, and
¢ = 1/n either for all k # j sufficiently large |y,(t) — y;(t)] < & = 1/n holds
for all te J, or else for all k # j sufficiently large there is some t € J, with
lyt) — vl Z & = Un.

We now repeat the entire process described in the preceding paragraph
consecutively on the intervals J,, J,... and then take the diagonal sub-
sequence, again denoted by {y,}. This sequence has the property that for
J; and ¢ = 1/n then either for every k # j sufficiently large, depending on i
and n, |y(t) — y()l <& = 1/n VteJ; or else for every k # j sufficiently
large, depending on i and n, |y(t) — y;(t)) 2 ¢ = 1/n for some teJ;,
depending on k, j.

We will now show using proof by contradiction that {y,} converges at
all but countably many values of x € I. For x €I such that {y,(x)} is not
convergent let {F,;} be the subsequence of {J;} consisting of the intervals
which contain x. There must be a smallest positive integer n,; such that
[vi(t) — y;(t)l = € = 1/n,; for all k # j sufficiently large for some t € F; or
else {y,} is Cauchy on F,; and hence converges at x which would contradict
the choice of x. If lim,_, , ,, n,; = + 0o then there is a subsequence n,;, of
{n,} such that lim,, , ,, n,, = + oo and by the definition of n,;,, we have
[¥(6) = ¥{OI < 1/(nyq — 1) for all k # j sufficiently large and all ¢ € F;,).
This implies {y(x)} is Cauchy which contradicts the choice of x, so
lim;, , . ny = ¢, < +. Letd, > c, be an upper bound for the set {n,;}.

If there are uncountably many x at which y,(x) is not convergent then
there is some number d so that d, < d holds for uncountably many x at
which {y,(x)} does not converge. Denote this uncountable set of x’s by 4.

Choose N so that N(1/d) > M. Now . choose u(l)e AnI° and
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F.ayiay € {Fuay} such that (I — F,4)4)) N A is uncountable. Choose
u2)e(I — F,yi1) N (AN 1% and F,;)2 € {Fu2} such that F,yq,
N F2)i2y = & and (I — (F,ayi1) Y Fuzyi2))) N A is uncountable. Con-
tinuing in this way we get {u(1),u(2),...,u2N + 1)} in AN I° and
{Funyiay Fu@yiay - - - » Fuan+ 1yian+1)}  Which are mutually disjoint. By
renaming the points u(i) we may assume u(l) < u(2) < --- < u2N + 1).
Now we choose k # j fixed but sufficiently large that for each odd positive
integer o, 1 £ a £ 2N + 1, |yi(x) — yi(X)] 2 € = 1/n,(4ie) holds for some
x(x) € F,yia) and for each even positive integer o, 2 < a < 2N, y(t,)
> y;(t,) holds for some t,€ F,,), and y(t,) < y;(t,) holds for some
7, € F, )iy Consider the partition P, = {f,, B, ..., B,} where B, = x(o)
ifais odd; B, is omitted from P, if a is even and y,(x(e — 1)) — y;(x(e — 1))
and y(x(a + 1)) — y;(x(a + 1)) have opposite signs; B, is taken to be ¢, if
yix(e — 1)) = yj(x(e — 1)) < 0 and yy(x(x + 1)) — y;(x(a + 1)) < 0; B, is
taken to be 7, if yux(x — 1)) — yi(x(e — 1)) > 0 and y(x(x + 1))
— yj(x(e + 1)) > 0. We observe this implies that T(y, — y;) = N(1/d) > M
for this fixed k +# j which contradicts the hypotheses of the theorem.

We conclude that {y,} converges for all but countably many values of x
and hence a subsequence can be chosen which converges at every point.

COROLLARY 3.1. Let {y,} be a sequence of real valued functions defined on
a nonempty set S < R. If T(y, — y;) £ M for all k, j (where partition points
are taken in S instead of I) then {y,} contains a subsequence which converges
pointwise on S.

PROOF. Define {z,}, z,:R — R by

Z(x) = y(x),  x€S§,
=0, x¢S,

then T(z, — z) = T(yx — y;) S M so Theorem 1.2 applies.

COROLLARY 3.2 (Helly Selection Theorem). Let {y,} be a sequence of
Sunctions of bounded variation with y, :[a, b] = R and let there exist a num-
ber K such that |y(x)l £ K for k =1,2,... and x€[a, b] and such that
Vi(y) S K for k = 1,2,... where V¥(y)) is the variation of {y,} on [a, b].
Then there exists a subsequence of {y,} which converges at every point.

PROOF. T(y, — y) < 2K + Vi(y. — y) £ 2K + Vi(y) + Vi(y) < 4K.
In fact, the limit function is of bounded variation but we are not concerned
with that here.

COROLLARY 3.3. Let {y,} € C(I) and D,; = {x:x € I, |y(x) — y,(x)| > 0}.
Then we know that Dy; = | J;/.=5 I;, where each I, is a relatively open

interval in I and Ly, O L = & for n # m. If Y73 SUPser, | Vi(X) — yi(X)|
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< M for all k, j then {y,} contains a subsequence which converges at each
point of 1.

COROLLARY 34. Let y,€ C(I) and K a fixed positive integer such that
{x:x €I, |ydx) — y;(x)] > O} contains no more than K components for each
k,j. If |\y(x)] £ H holds, for xel and k = 1,2,..., then {y,} contains a
subsequence which converges at every point of I.

PROOF. T(yk - yl) é KH.
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