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The concept of functions of bounded variation on a linearly ordered set 
has been generalized to a distributive lattice [1] and more recently to a 
semilattice (cf. [3], [4] and [5]). Here, using different techniques, we further 
extend this notion to commutative semigroups with identity and show 
that the BK-functions characterize the "abstract moment sequences" or 
what we call moment functions. 

Let S be a commutative semigroup with identity 1. A nontrivial homo-
morphism, which maps S into the multiplicative semigroup of non-
negative real numbers not greater than 1, will be called an exponential 
We will denote the set of all exponentials on S by exp(S). Equipped with 
the topology of simple convergence, exp(S) is a compact Hausdorff space. 
We now formulate the abstract moment problem. Given a real-valued 
function ƒ on 5, when does there exist a regular Borel measure \xs on 
exp(S) such that f(x) = jeeexp(S)

e(x)dfif(e) for all xeS? The Stone-
Weierstrass theorem implies the uniqueness of the representing measure 
(cf. [2]), when it exists. Thus using the terminology of [6], the abstract 
moment problem is completely determined. Those functions on S which 
admit representing measures will be called moment functions. 

The exponentials of the semigroup N of nonnegative integers under 
addition can be identified with the closed unit interval [0,1] in a natural 
way. Hence, if S = N9 the abstract moment problem reduces to the 
already solved little moment problem of Hausdorff and a real-valued 
function on TV is a moment function if and only if it is a moment sequence 
in the classical sense (cf. [7, p. 100]). 

Our main result is then that the moment functions and BF-functions 
agree. The methods used provide a new proof of the classical characteriza­
tion of moment sequences. Principal results on BF-functions contained 
in [1], [3] and [4] also follow in a new way. 

Let ƒ be a real-valued function on S and xeS. The translate function 
fx of ƒ by x is defined in the usual way by fx(y) = f(xy) for y e S. Successive 
differences of ƒ can be defined inductively by 

A0/(O)EE/(O) and A„/(o; hl9...,/in) = A,,.^ ƒ - ƒ,„)(.; fclf- + ., hn^) 
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where ne N and ht e S. Thus An f (o; hl9...,hn)isa. function of one variable 
with increments ht (i = 1,2,..., n). The integers {0,1, . . . , n} will be 
denoted by In and ƒ* will denote the set of functions from Ik into ƒ„, the 
image of j e Ik under i el*being denoted by ij. We let X = {xj\j e Ik} be a 
finite subset of S, and set 

^/{{xujii, n) = Yl\ [A/ I K ^ ^ i , . . . ^ ! , , .. ,x f c , . . . ,xJ 
j V W n - h n - ik ' 

where each x} appears n — ij successive times as an increment in the 
difference on the right. The total variation V(f) of ƒ is defined by 

F ( / ) = s u p X \Af({Xj};Un)\. 
n>x ielk 

The function ƒ is said to be a BV-function (feBV(S)) if V(f) < oo. Our 
main result is as follows. 

THEOREM. A real-valued function f on S is a moment function if and 
onlyiffeBV(S). 

Details of the proof will appear elsewhere. Below, we only include a 
brief outline. 

Note that the total variation ||/x|| of a regular Borel measure juon a 
compact Hausdorff space can be expressed as 

sup X \[pidii Z \\po 

where the supremum is taken over a sufficiently large collection of parti­
tions of unity. If \is is the representing measure for the moment function 
ƒ and if we define the continuous real-valued function x on exp(S) by 
x(e) = e(x) for each xeS then 

Af({xj} ; U n) =j]j\"\#j(l - *ƒ "°dpf. 

The "only if" part of the assertion now follows from the theory of Bern­
stein polynomials. For using these facts it can be seen that there are enough 
partitions of unity of the form 

{n(")^i-^r°N/; 
to realize the total variation H^|| of fif as above. 

Conversely, suppose ƒ eBV(S). Recall that ƒ is said to be completely 
monotonie if each finite difference Anf(x; hl9...,hn) is nonnegative. It 
follows from [2] that any function which is the difference of two completely 
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monotonie functions is a moment function. Through a series of lemmas 
one can show 

V(f - fx) = V(f) - V(fx) 

for all xeS. From this it follows that both/"1" a n d / - as defined by 
ƒ + W = \[V{fx) + ƒ(*)] and ƒ-(*) = ftV(fx) - ƒ(*)] are completely 
monotonie. Thus ƒ is a moment function. 

The Banach lattice M(exp(S)) of regular Borel measures on exp(S) can 
be identified with BV(S) via the linear map f-+ fxf. Hence BV(S) is a 
Banach lattice and as such all lattice operations can be described in terms 
of the variation of its members. We will denote the variation function of 
ƒ eBV(S) by \f\. That is, |f\ = ƒ v ( - ƒ ) . 

COROLLARY. IffeBV(S) then \f\(x) = V(fx) and V(f) = | |^ | | . 

If S is a semilattice, then the above corollary implies the equivalence 
between our notion and that introduced in [3]. The equivalence between 
our concept and that of [5] (as well as the classical concept for linearly 
ordered sets) follows routinely once the latter is formulated in our setting. 
If S is a distributive lattice and ƒ is a BV-valuation, then it follows from 
[3] that V(f) is the total variation as defined in [1]. 

Other properties of BV(S) can be easily derived from the results of [2] 
which we feel should be mentioned here. First of all, the convolution 
\x * v of two regular Borel measures fi and v on the compact semigroup 
exp(S) can be defined in the usual way. The following result easily follows. 

PROPOSITION. Iff, geBV(S) admit representing measures jaf and fig, 
respectively, then fif*fig = fifg. In particular, BV(S) is a Banach algebra 
under pointwise multiplication. 

A second consequence of [2] is as follows. 

PROPOSITION. The positive cone of the Banach lattice BV(S) is the cone 
of completely monotonie functions on S. 

Consequently, a necessary and sufficient condition that a function be a 
member of BV(S) is that it is the difference of two completely monotonie 
functions. Since the completely monotonie functions on a linearly ordered 
set (regarding this set as a semilattice under A ) are the nonnegative non-
decreasing functions, we get the well-known decomposition of the classical 
B V-functions into monotonie functions. 
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