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We announce extensions of a part of the Artin-Schreier theory of real 
fields to semilocal rings. Detailed proofs will appear elsewhere. 

A always denotes a (not necessarily noetherian) semilocal commutative 
ring such that no residue class field has only two elements. A signature on A 
is a homomorphism a from the unit group, A*, of A to {± 1} with a{— 1) 
= — 1 and a(l2 + am2) = 1 for all triples (a, /, m) in A* x A x A such that 
I2 + am2 is a unit and cr(a) = 1. 

EXAMPLES, (i) If A is an integral domain and < is a total ordering of A 
then a :A* -» {± 1} defined by a(a) = 1 if a > 0 and a(a) = — 1 if a < 0 is 
a signature. If A is a field the signatures correspond bijectively with the 
orderings of A. 

(ii) Let A be the local ring of the affine curve X2 + Y2 = 0 over the real 
field R at (0,0). Then the signature 

<T:A* 4 J ? * ^ { ± 1 } 

obtained by composing the evaluation map v at (0,0) and the unique sig­
nature s of R does not arise from an ordering of A. 

(iii) For valuation rings we are able to analyze the situation to some 
extent : Let A be a valuation ring with maximal ideal m. Then any signature 
G arises from an ordering of A, \iA has rank one and o(\ + m) ^ 1, then a 
arises from a unique ordering. If A is a discrete rank one valuation ring and 
(7(1 + m) = 1, then there are exactly two orderings on A inducing the 
signature a. 

Let A now again be a general semilocal ring as above. 

PROPOSITION 1. Let a be a signature, al9...,ar units of A, and lu...,lr 

elements of A such that b — l\ax + • • • + l2ar is also a unit. Then G{a^) 
= • • • = o(ar) = 1 implies <r(b) = 1. 

DEFINITION. A subset M oîA* is saturated if M is a subgroup of A* and 
au..., ar in M implies b in M for all units b = l\ax + • • • + l2ar with /,- in A. 

Thus Proposition 1 states that for any signature a the set 

r(<r)= {a in y4*| <r(a) = 1} 

is saturated. 
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DEFINITION. For any subset M of A* the saturation M is the smallest 
saturated set containing M. 

The elements of M are easily seen to be the units of the form 

0 â ij<â 1 

with ai,..., ar in M and the c(0 sums of squares in A. 

THEOREM 2 (CF. [12, SATZ 21 awrf1, SATZ 2]). Assume 2 is in A*. Then, for 
any subset M of X*, 

M=nr(cx), 
where a runs through the set of signatures with T(G) => M. 

Theorem 2 for A a field is due in this generality to E. Witt (unpublished). 
We next state three special cases of Theorem 2 : 

(1) The T(G) are the maximal saturated proper subsets of A*. 
(2) Let M = {1}. The units b of A with <r(b) = 1 for all signatures a are 

precisely the units which are sums of squares (cf. [1, Satz 1]). In particular 
— 1 is a sum of squares if and only if A has no signatures (cf. [2, Satz 7b]). 

(3) Let A' be a semilocal subring of A without any residue class fields 
containing only two elements. A signature G of A' can be extended to a 
signature of A if and only if there is no equation — 1 = l\b1 + • • • + l2br 

with bt in A'*, G(bt) = 1 and lt in A (cf. [4, Theorem 1, p. 34]). 
It has been shown by one of us [8] that in a local ring A with — 1 a sum of 

squares, the least number of squares needed to represent — 1 is of the form 
2n if 2 is in A* and of the form 2n or 2n - 1 otherwise. 

Let B a finite étale extension of A, in other words B is a finitely generated 
projective ,4-module and a projective B ®A B-module [6, Proposition 
18.3.1, p. 114]. To generalize the Artin-Schreier theory further it seems to 
be important to study extensions of signatures of A to those of B. We have 
only obtained partial results concerning this problem : 

PROPOSITION 3. Let a be a signature of A and assume for simplicity that 
the projective A-module B is free of rank \B\A\ 

(i) If [B : A] is odd then a has at least one extension to B. 
(ii) Suppose B = A[X]/(f(X)) with f(X) a monic polynomial in A[X\ 

(This is always the case if B is local) If there exists some c in A such that 
f(c) is a unit in A with a(f(c)) = — 1, then a has at least one extension to B 
(cf. [4, Proposition 3, p. 36]). 

(iii) If B is a galois extension of A as defined in [3] and [5], then G has either 
no extension to B or exactly [B : A] extensions. 

(iv) Assume [B:A] = 2, so that B = A[X]/(f(X)) with f(X) = X2 - X 
— c for an element c in A such that 1 + Ac lies in A*. Then a has an extension 
to B if and only if a(\ + 4c) = 1. 
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In contrast to Artin-Schreier, we strongly use the structure theorems for 
the Witt ring, W(A\ of free nondegenerate symmetric bilinear spaces over 
A [9], [10] to prove these results. The connection arises from the following 
theorem : 

THEOREM 4 (CF. [7] AND [11]). The signatures of A correspond bijectively 
with the ring homomorphisms W(A) -> Z. The correspondence associates to 
each signature a a homomorphism \\ia mapping a space (a) of rank one to a(a). 

D. K. Harrison had already suggested that Proposition 3(iii) could be 
proved for galois field extensions of odd degree by considering the Witt 
ring without making use of the theory of real closures [14, §5]. 

Every subset M of A* yields an ideal ct(M) of W{A) generated by the 
binary spaces (1, — a) with a in M. Results on multiplicative forms [8] imply : 

THEOREM 5. Let 2 be in A*. Then for any subset M of A* the radical of 
a(M) is a(M). 

EXAMPLE. Considering M = {1} we obtain : If 2 is in A*9 the ring W(A) 
has no nonzero nilpotent elements if and only if every unit of A which is 
a sum of squares is a square itself (cf. [11]). 
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