EXTENSION OF POSITIVE HOLOMORPHIC LINE BUNDLES

BY BERNARD SHIFFMAN1

Communicated by Gian-Carlo Rota, May 7, 1971

In this note, we announce a result on extending complex line bundles through subvarieties of codimension 2. The motivation for this result is that it allows us to extend a recent result of Phillip Griffiths [2] on meromorphically extending holomorphic maps into compact Kahler manifolds. Details and further related results will appear elsewhere.

A holomorphic line bundle L on a complex manifold M is said to be *semipositive* if there exists a hermitian metric h on L such that the curvature form

$$\Omega = \frac{i}{2\pi} \, \partial \overline{\partial} \, \log \, h$$

is positive semidefinite at all points of M (i.e., the locally defined functions $\log h$ are plurisubharmonic).

THEOREM. Let M be a complex manifold, and let S be an analytic set in M such that codim S=2. Then every semipositive holomorphic line bundle L on M-S extends to a holomorphic line bundle on M.

If codim $S \ge 3$, then it is a well-known fact that any line bundle L on M-S extends to M (see [3]).

In order to prove the theorem, one must show that L induces the zero element of $H^2_S(M, \mathfrak{O}^*) \approx \Gamma(M, \mathfrak{K}^2_S \mathfrak{O}^*)$. Therefore it suffices to show that L extends locally, and the theorem is then a consequence of the following lemma applied to the curvature form Ω .

We let D denote the open unit disk in C.

LEMMA. Let

$$\omega = i \sum f_{\alpha\beta} dz_{\alpha} \wedge d\bar{z}_{\beta} \qquad (1 \leq \alpha, \beta \leq n)$$

AMS 1970 subject classifications. Primary 32D15, 53C55; Secondary 32C10, 32H99.

Key words and phrases. Holomorphic line bundle, curvature form, positive line bundle, sheaf cohomology, local cohomology, harmonic function, plurisubharmonic function, analytic subvariety, Kahler manifold, meromorphic map.

¹ This research was partially supported by National Science Foundation Grant GP-21193.

be a real closed (1, 1)-form on the domain

$$W = (D^2 - 0) \times D^{n-2} \subset \mathbb{C}^n.$$

If $f_{11} \ge 0$ and $f_{22} \ge 0$ on W, then there exists a real-valued function u on W such that $\omega = dd^c u$. In particular, if ω is a Kahler form on W, then $\omega = dd^c u$, where u is a function on W.

Write $W = W_1 \cup W_2$, where

$$W_j = \{z \in W : z_j \neq 0\}, \text{ for } j = 1, 2.$$

Then $\omega \mid W_j = dd^c u_j$, where u_j is a real-valued function on W_j (j=1,2). Let $h = u_1 - u_2$ on $W_1 \cap W_2$. Then $dd^c h = 0$, i.e., h is pluriharmonic. For the case n = 2, u_1 and u_2 are subharmonic in each variable separately. The main point of the lemma (and the theorem) is that we can then write $h = h_1 - h_2$, where h_j is a pluriharmonic function on W_j (j=1,2), and therefore $u = u_j - h_j$ is a globally defined function on W with $\omega = dd^c u$. The proof uses the solution of the Dirichlet problem on the annulus $A_r = \{r < |z| < 1\}$. By considering the biannulus $A_r \times A_s$ and letting $(r, s) \rightarrow (0, 0)$, one constructs functions \tilde{u}_j on W_j (j=1,2) such that \tilde{u}_1 and \tilde{u}_2 are harmonic in each variable separately, and $h = \tilde{u}_1 - \tilde{u}_2$. The existence of h_1 and h_2 then follows from the equation $h = \tilde{u}_1 - \tilde{u}_2$.

In [2], Phillip Griffiths proved the following result.

THEOREM (GRIFFITHS). Let $f:D^n-0\to X$ be a holomorphic map, where X is a compact Kahler manifold. If $n\geq 3$, then f extends meromorphically to D^n (i.e., the closure of the graph of f is an analytic set in $D^n\times X$).

Griffiths' idea is to apply a theorem of Errett Bishop [1], [4] on extending analytic sets with finite volume. Consider the Kahler form

$$\omega = \frac{i}{2} \sum dz_{\alpha} \wedge d\bar{z}_{\alpha} + f^* \omega_X$$

on D^n-0 , where ω_X is the given Kahler form on X. The volume of the graph of f is then given by $\int \omega^n$. Since $H^2(D^n-0, R)=0$ and $H^1(D^n-0, 0)=0$, for $n\geq 3$, one can write $\omega=dd^cu$, where u is a plurisubharmonic function on D^n-0 . By approximating u by smooth plurisubharmonic functions on a ball $B\subset D^n$ about 0 and by applying Stokes' theorem, Griffiths concludes that $\int_B (dd^cu)^n < +\infty$.

By the above lemma, we can also write $\omega = dd^c u$ for the case n = 2 (although $H^1(D^2 - 0, \mathfrak{O}) \neq 0$). Therefore, Griffiths' theorem is also valid for n = 2.

REFERENCES

- 1. E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289-304. MR 29 #6057.
- 2. P. A. Griffiths, Two theorems on extensions of holomorphic mappings, Invent. Math. (to appear).
- 3. G. Scheja, Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann. 144 (1961), 345-360. MR 26 #6437.
- 4. B. Shiffman, Extending analytic subvarieties, Proc. Sympos. on Several Complex Variables (Park City, Utah, 1970), Lecture Notes in Math., no. 184, Springer-Verlag, Berlin, 1971, pp. 208–222.

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520