
BULLETIN OF T H E 
AMERICAN MATHEMATICAL SOCIETY 
Volume 77, Number 6, November 1971 

ON EQUIDISTANT CUBIC SPLINE INTERPOLATION 

BY I. J. SCHOENBERG 

Communicated by Fred Brauer, May 14, 1971 

Let n be a natural number and let S[0, n] denote the class of 
cubic spline functions S(x) defined in the interval [0, n] and having 
the points 1, • • • , n — 1 as knots. This means that the restriction of 
S(x) to the inverval (*>, v+1) {v = 0, • • • , n — 1) is a cubic polynomial, 
and that S(#)£C 2 [0 , n]. The most general element of 5[0, n] is 
evidently of the form 

3 n - 1 

(1) S(x) = X) a»xV + ]C c»(x — )̂+> 
0 1 

and is seen to depend linearly o n w + 3 parameters. Here we have used 
the function # + = max(0, x). 

The interpolatory properties of the elements of the class 5[0, n] 
have recently attracted considerable attention. The two main kinds 
of this so-called cubic spline interpolation are as follows. 

1. Natural cubic spline interpolation. We are required to find 
•SOxOGSfO, n] such as to satisfy the conditions 

(2) 500 = ƒ(") (" = 0, • • • , »), 

(3) S"(0) = S"(n) = 0. 

2. Complete cubic spline interpolation. Here we are asked to find 
5 ( x ) £ S [ 0 , n ] so as to satisfy the conditions 

(4) 500 = f(y) (P = 0, • • • , »), 

(5) S'(0) = / ( 0 ) , S'(») = ƒ'(«). 

The existence and unicity of the solutions of these problems is 
widely known. See [ l ] , [2], or [5, Chapter 4] for illuminating discus­
sions of these problems. 

We may describe the solution of the first problem (2), (3) by the 
interpolation formula 

(6) m = è/«£>(*) + R, 
0 

where the fundamental functions Lv(x) are elements of S[0, n] and 
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are characterized by the conditions 

(7) L,(j) = övJ and ///(O) = £,'/(») = 0 for all v. 

Likewise the solution of the second problem (4), (5) is described 
by the formula 

(8) ƒ(*) = Y,f{v)Lv(%) + f'(0)A(x) -f'(n)A(n - x) + R, 
o 

where the fundamental functions Lv(x) and A(#) are elements of 
S[0, n] and are characterized by the conditions 

(9) Lv(j) = «,,,, Li (0) = Li (n) = 0 for all y, 

and 

(10) A(i) = 0 for ally, A'(0) = 1, A'(») = 0. 

Until now, the solution of these problems, i.e. the construction of 
the interpolating spline function, has usually required the inversion 
of a matrix (essentially a tridiagonal matrix) of a size that was roughly 
nXn. I t is the purpose of this note to describe explicit solutions of 
these problems that do not require any matrix inversion. 

Let Jlfi(x) = l if - i â f f â j , and Mi(x)=0 otherwise. The 4-fold 
convolution M(x) =MA(x) = Mi * Mi * Mi * M^x) is a bell-shaped 
frequency function with its support in the interval ( — 2, + 2 ) . 
Explicitly 

M{x) = MA(X) 

= *{(* + 2)+ - 4(* + 1)+ + 6 4 - 4(* - D+ + (* - 2)+}, 

an expression which shows that M(x) is a cubic spline function defined 
for all real x and having knots a t the five points —2, — 1 , 0, 1, 2. 
See [6, 71], where a graph of M(x) is also given. 

A relevant property of the function M(#), called the cubic B-spline 
is expressed by the following: 

LEMMA 1. Every 5(JC)G»S[0, n] admits a unique representation of 
the form 

n- f - l 

(12) S{x) = X) CyJf (* - j) (O^x^n). 
-i 

Our interpolation problems are solved as soon as we determine the 
coefficients of the representations 
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n + l 

(13) Lv(x) = 3jCj,,M(x—j)9 
- l 

n+ l 

(14) Ly(x) = Z)cy,,M(a;-y), 

n + l 

(15) A(«) = É 7 y i f ( * - j ) , 
„ 1 

and therefore 

n + l 

(16) - A ( » - -*) = - £ Tn-jMO^ - y ) 
- 1 

for the last fundamental function in (8). 
We need the algebraic integer 

(17) x = - 2 + V 3 = - .26794 91924, 

which is the root of least absolute value of the equation x 2 + 4 x + 1 = 0. 
Furthermore, let 

(18) Xk — ak + bkV3 for all integers k, 

where ak and bk are integers. The expressions 

(19) «» = J(X* + X-»), h = - i - (X* - X-*) 
2V3 

show that both sequences (a*) and (&&) satisfy the same recurrence 
relation 

xk+2 + 4:Xk+i + xk = 0 for all &, 

and are defined by it with the initial values 

a0 = 1, a\ = — 2, and #0 = 0, &i = 1, 

respectively. The sequence (a*) is even, while the sequence (&*) is 
odd. A short table of values is as follows: 

£ - 1 0 1 2 3 4 5 6 

ak 

bk 

Incidentally, the numbers x = | ak\, y — | 6*1 represent all integer solu­
tions of Pell's equation x2 — 3y2— 1. 

- 2 

- 1 

1 

0 

- 2 

1 

7 

- 4 

- 2 6 

15 

97 

- 5 6 

- 3 6 2 

209 

1351 

- 7 8 0 
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Our main results are the following two theorems. 

THEOREM 1. The coefficients c3-tV of the fundamental functions (13) 
for natural cubic spline interpolation are described as follows: 

( . cJto = 2 - (6n- i /W iff = - 1 , 

= bn~j/bn if f = 0, 1, • • • , n + 1; 

Cj,w = — 6 bn-.vbj/bn if j £ v, 0 < v < n, 

= —6 bn-jbv/bn if v ^ j , 0 < v < n. 

Moreover, the symmetry relations 

\£Z) CjtV
 = = Cn—j,n—p 

hold throughout, and in particular for v = n we find that 

(23) Cj,n = Cn-j,0 

are already described by the formulae (20). 

THEOREM 2. The coefficients Cj,v and jj of the fundamental f unctions 
(14) and (15) for complete cubic spline interpolation are as follows: 

(24) Cj,o = — an^\j\/bn, 

Cj,v = — 2 ajan-v/bn if j S v, 0 < v < n} 

= —• 2 avan-j/bn ifv^j,0<v<n. 

The symmetry relation 

\£0) Cjty
 = = Cn—j,n—v 

holds throughout, and for v — nwe find 

(27) Cj,n = = Cn—i,0 

already described by (24). Finally 

(28) Ti = ~ \ an-j/bn. 

In the application of these formulae there is never any loss of 
accuracy due to numerical instability, no matter how large n may be. 
In fact, writing Cy,„ = CyJ, we have that 

(29) Km CjfV = cjt„ as n —» oo, 

where 
00 

(30) 1*0) = E ct,M(x -j) (i> = 0, 1, 2, • • • ) 
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are the fundamental functions of semicardinal cubic spline inter­
polation. Their coefficients are found to be 

(31) 

(32) 

Cj.o = 2 — X iij = — 1, 

= X» if j â 0; 
-f- V 

Cj,P = — 6 bj\ if j é v, v > 0, 
= - 6 bv\

j \iv£j,v> 0. 

Similar results hold concerning <£$ and yjn\ 
Our subject has received special attention in [l, §2.4] and [3]. 

Greville's approach seems closest to ours. He determines the coeffi­
cients av and cv of the solution S(x) of (2) and (3) in its explicit form 
(1). In order to avoid the loss of accuracy inherent in this formula­
tion by using integer arithmetic (as Greville recommends), one must 
work with a large number of digits even for moderately large values 
of n. Indeed, if n — 20, say, products containing close to 20 digits and 
multiplicands of more than 10 digits appear in the calculations. The 
advantages of using the representation (12) in terms of 5-splines 
become apparent. 

Computational advice. Construct the solution S(x) of the problem 
(2), (3) in the form (12), where the Cj are to be determined from the 
relations 

Q = Ê «M (j = - i, o, • • • ,» + l). 

A similar remark concerns the problem (4), (5). 
The results here described were obtained by means of the funda­

mental function and the eigensplines of cardinal spline interpolation 
as discussed in [7]. In the present cubic case this approach is par­
ticularly simple and intuitive. An alternative and shorter way of 
obtaining Theorems 1 and 2 is to use the results of D. Kershaw as 
described in [4]. The connection is as follows: If we introduce the 
representation (12) into the equations (4) and (5), we obtain a system 
of n+3 equations for the n+3 unknown coefficients Cj. The matrix of 
this linear system is a special case of one of the matrices that were 
explicitly inverted by Kershaw in [4]. Similarly, the problem (2) and 
(3) leads to a matrix that can easily be reduced to a special case of 
another matrix already inverted by Kershaw. Kershaw does not 
point out this application of his results, an application that becomes 
strikingly apparent if we use the representation (12) in terms of B-
splines. However, our approach via cardinal spline interpolation has 
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the advantage of generalizing to higher degree spline interpolation 
problems. Indeed, in a forthcoming paper [8], written in collabora­
tion with A. Sharma, we present the applications of our approach to 
quintic spline interpolation problems. 
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