
BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 77, Number 6, November 1971 

PFISTER FORMS AND K-THEORY OF FIELDS1 

BY RICHARD ELMAN AND T. Y. LAM 

Communicated by Hyman Bass, May 20, 1971 

Let F be a field of characteristic different from two. We shall write 
W(F) to denote the Witt ring of F, and 1(F) to denote the ideal of all 
even dimensional forms in W(F). Also, let KnF (n^l) be the higher 
i£-groups of F defined by Milnor in [3], and knF = KnF/2KnF. The 
elements l(a{) • • 'l(an)ÇzknF will be called the generators of knF. If 
(ai, • • • , an) is an w-tuple of nonzero elements of F, we shall write 
((#1, • • • , an)) for the 2n-dimensional quadratic form ®?=i (ait 1), 
and refer to it as an n-fold Pfister form. Clearly, these n-iold Pfister 
forms give a system of generators of InF as an ideal in W(F). In 
[3], Milnor showed that 

sn(K*0- '*(*»)) = « - * ! , • • • , - *»» (mod I~"F) 

gives a well-defined epimorphism from knF onto InF/In+1F. In §4 of 
[3], Milnor raised the question whether these maps are isomorphisms. 

In studying this problem, the Pfister forms clearly play a crucial 
role. In this note, we announce the following results. 

THEOREM 1. The following statements are equivalent: 
(1) (( — ai, — a2)), (( — bi, — b2)) are isometric (Pfister) forms. 
(2) « - a i , -<H)) = ((-bl9 - & , » (mod PF). 

( 01, Ö2\ ( bi,b%\ 
j ? 1 ——__ 1 are isomorphic (quaternion) algebras. 

(4) /(ai)/(o2)=/(6i)/(W «* £2^. 

This theorem shows that /(ai)/(a2)£&2^ or the quaternion algebra 

(r9) 
(in the Brauer group of F) gives a complete invariant for the isometry 
class of a 2-fold Pfister form (( —#i, — #2)). One therefore naturally 
asks if an analogous result will hold for the isometry class of an 
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n-fold Pfister form. Motivated by this, one is led to the following 
definition. Let ((#i, • • • , an)) and ((bu • • • , bn)) be two n-îoïd 
Pfister forms (n^2). We shall say that they are simply-p-equivalent if 
there exist two distinct indices i and j such that 

(a) ((#*, aj))~:((hit bj)) (see Theorem 1 for equivalent conditions), 
and 

(b) au, = bu whenever k is different from i and j . 
More generally, we say that two n-lold Pfister forms 0 and 0 ' are 

chain-p-equivalent if there exists a sequence of n-îold Pfister forms 
0o, 0i, • • - , 0m such that 0o=0 , 0m = 0 ' and that each 0» is simply-£-
equivalent to 01+i ( O g i ^ m — 1). This is clearly an equivalence rela­
tion on all w-fold Pfister forms, and Theorem 1 shows if 
(( — ai, • • - , —an)) is chains-equivalent to ((—• b%t • • • , — bn)), 
then l(ai) • • -l(an) equals l(bi) • • -Z(&n) in fenF. Further, it turns out that 
chain-p-equivalence of n-îold Pfister forms coincides with ordinary 
isometry of such forms. This may be viewed as an analog of Witt 's 
classical chain equivalence theorem [5]. 

Theorem 1 now generalizes as follows: 

THEOREM 2. The following statements are equivalent: 
(1) ((—ah • • • , —an)) and (( —&i, • • • , — &n)) are chain-p-

equivalent. 
(2) Z(ai) • • -/(a») =/(6i) • • -Z(èn) t* £nF. 
(3) ( ( - a ! , • • • , - a n »EEE«-ôi , . . . , -& w » (mod I^F). 
(4) (( — ai, • • - , —on)) #wd (( — &i, * • • , "bn)) are isometric. 
(5) rftere exist nonzero elements a and b in F such that (a)® (( — au 

• • • t —an)) is isometric to (b)®(( — 6i, • • • , —bn))-

In particular l(ai)l(a2) • • -l(an)G.knF is a complete invariant for the 
isometry class of a Pfister form (( —#i, • • • , —an)). 

COROLLARY 1. (( —#i, • • • , —an)) is hyperbolic if and only if 
l(ai) • • -l(an) = 0 w fen^. Iw particular knF = 0 if and only if InF=0, if 
and only if every n-fold Pfister form is hyperbolic. 

COROLLARY 2. If the level of Fis s = 2m, then m is precisely the smallest 
integer such that l( — l)m+1 = 0 in km+iF. (This refines Milnor's result in 
[3, Theorem 1.4].) Furthermore, dimz2&m~r+i F^r(r + l)/2 ( l g r g m ) , 
and \W(F)\ ;>2-2w(m+1)(m+2) /6. 

Theorem 2 is proved by showing the chain of implications (1)=>(2) 
=>(3)=»(4)=»(1) ((4) and (5) are easily seen to be equivalent). The 
implication (3)=*(4) is proved by extending the techniques of Arason 
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and Pfister [ l ] , while (4)=*(1) is based on the following Proposition. 

PROPOSITION. Ifr^((ah • • • , ar)) anda = ((bu • • • , b8)) = (l)±a'f 
and if CIT^O is represented by the form r®cr', then there exist nonzero 
£2, * * • , cs in F such that = ((au • • • , ar, 61, • • • , bs)) is chain-p-
equivalent to ((au • • • , ar, cu * * * , c8)). 

Note that the Proposition also gives a proof of the following well-
known fact: if a k-fold Pfister form 0i is a subform of an n-fold Pfister 
form 7, then there exists an (n — k)-fold Pfister form 02 such that 
7=0 i®02 . The known proof of this utilizes Pfister's theory of strongly 
multiplicative forms (see [4]). 

The Proposition also yields the following : 

THEOREM 3. Suppose 0, r are n-fold Pfister forms. Then 7 = 
0 i - ( — l ) r contains a hyperbolic form 2rH (rSn and H denotes the 
hyperbolic plane (1, — 1)) if and only if there exist an r-fold Pfister form 
<r and two (n — r)-fold Pfister forms 0O and To such that 0=cr®0o and 
r=cr®To. Furthermore the Witt index of 7 is a 2-power. 

COROLLARY 1. Suppose every 2n-dimensional form over Fis universal. 
Then 

(1) In^F=0; 
(2) sn is an isomorphism from knF to InF; 
(3) every element of InF is represented by an n-fold Pfister form ; 
(4) every pair of n-fold Pfister forms 0, r can be written as Ö-®0O and 

<r®To, where a is an (n — \)-fold Pfister form, and 0O, r0 are 1-fold 
Pfister forms. 

COROLLARY 2. If F is a Cz-field (e.g. any f unction field of transcen­
dence degree 3 over the complex numbers), then for all n, sn:kn-+In/In+1 

is an isomorphism f or F, and hence also for F(X), by [3, Corollary 5.8]. 

Using Theorems 2 and 3, we also obtain the following: 

THEOREM 4. Let 0 t = ((a ti, • • • , ain)) (i = l, 2, 3) be three n-fold 
Pfister forms. If 0i±02-L03G/n+1(-^)» then there exist an {n — \)-fold 
Pfister form r and nonzero elements x, y in F, such that 

0i = r ® ( — x y , 1), 02==r ® (x, 1), and fa = r ® (y, 1). 

In particular, there is an isometry (~^)0iJL03^02JL2n"~1ff. Also, the 
summation ]C?«i/(•—aa)* • •/( — ain) vanishes in knF. 

COROLLARY 1. If every element in knF can be expressed as a sum of at 
most three generators, then sn'knF—*InF/In+1F is an isomorphism. In 
particular, if \ knF\ S 64, then sn is an isomorphism. 
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COROLLARY 2. Let n be a fixed integer, and suppose that every element 
of knF is equal to a generator, then every element in kmF (m^n) is also 
equal to a generator of kmF. In particular, sm:kmF~^ImF/Im+1F is an 
isomorphism for all rn^tn. Furthermore, given any pair of m-fold 
Pfister forms <j> and r (m^n), there exist an {m — \)-fold Pfister form a 
and nonzero elements x, y such that cj>~a®(x, 1) and r=<7®(^, 1). 

We will demonstrate the usefulness of Corollary 2 by two examples : 
EXAMPLE 1. Suppose k2F has at most four elements. Then one can 

show: every element of k2F is equal to a generator (in which case 
Corollary 2 applies). 

EXAMPLE 2. Let F be a global field. Then one can show that every 
element of kzF is equal to a generator (see [3, Appendix], or [2]). 
Hence the corollary also applies in this case. Actually, every element 
of k2F is equal to a generator. 

In these and some other examples, we have been able to determine 
all relations among Pfister forms. 

We wish to express our hearty thanks to Arason and Pfister, who 
sent us the preprint of their work [l ], from which some of the ideas in 
this note developed. 
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