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1. Preliminaries. A functor from a category of combinatorial
geometries, or equivalently a category of geometric lattices, to a cate-
gory of commutative algebras will be described, and some properties
of this functor will be investigated. In particular, a cohomology will
be associated to each point of a geometry and will be derived from
the associated algebra.

If (G, S) is a geometry on a set S [1, p. 2.4], then L(G), or simply
L when no opportunity for confusion exists, denotes the associated
geometric lattice of closed subsets of S. The rank function of L or G
is denoted 7.

A morphism

a: (G, S) — (G, S)
of geometries is a function
oSV {0} -5 U {0}

such that ¢(0) =0 and the inverse image of a closed subset of S’ is a
closed subset of .S. It is precisely the latter condition which is neces-
sary and sufficient [1, p. 9.17] to extend o to a strong map [1, p. 9.3]

o: L(G) — L(G').

The category of geometries with morphisms defined as above is equiv-
alent to the category of geometric lattices and strong maps. These two
categories will be used interchangeably throughout.

2. The functor (G, S)—A(G). Let k be a commutative ring (with 1).
For any geometry (G, \S), let P(G) be the symmetric k-algebra on the
free k-module on S; that is, the k-algebra of polynomials in S. Let
J(G) be the ideal of P(G) generated by all monomials in .S and dif-
ferences of monomials in S of the forms
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vy v2 Vg

X1 %2 ¢ ¢ ¢ Xy where r(Va)) <wvit+vat - + v,

Xi¥s - %y — Y1¥2© -+ Ya where Va; = Vy,,

respectively and where # is any positive integer. Let A4(G)
=P(G)/J(G). J(G) is a homogeneous ideal of the graded algebra
P(G), and so A(G) is a graded algebra. For each nonnegative integer
n, let 4,(G) denote the homogeneous component of 4 (G) of degree .
That 4.(G) =0, for n>r(G), follows from the definition of J(G). The
image of .S in 4 (G) generates 4 (G) as an algebra, and it is easily seen
that the natural algebra homomorphism of P(G) onto 4 (G) embeds
S in 4(G) as a linearly independent subset. For this reason, identical
symbols will be used to denote an element of .S and the image of that
element in 4(G) and P(G).

For any nonnegative integer # such that » =r(L), let L, denote the
set of elements of L of rank #. For each x&L,, choose x1, xa, + - -,
%, ES such that x=Vx;. The following proposition can easily be
proved.

ProrositioN 1. { [] «:|*E L.} is a basis for 4.(G).

Hence, 4 (G) has a basis, and 4 (G) is finite dimensional if and only
if S is finite.
For 0=n=<r(L), let B,(G) denote the free k-module on L,. Let
B(G) =P B.(G). For xEL,, yEL,, with n, m<r(L), the map
(%, 9) = a2Vy, ifr(xVy) =n+m,
(%, y) —0, if r(xVy) < n+m,

determines a graded k-algebra structure on B(G).
COROLLARY 1. A(G)~B(G) as graded k-algebras.

Let a: (G, S)—(G’, ') be a morphism of geometries. For xE.S, the
association

x> o(x) € AG"), fo(x) €S,
x>0 € AG), if o(x) = 0,

uniquely determines an algebra homomorphism of P(G) into 4 (G’).
Since ¢, considered as a strong map of L(G) to L(G’), is supremum-
preserving and satisfies 7(o(w)) S7(w) for any w& L(G), the kernel of
this algebra homomorphism contains J(G). So there is uniquely de-
termined a homomorphism

A(0): A(G) — A(G)
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of algebras. In fact, 4(s) is a homomorphism of graded algebras. It
follows easily that

ProPOSITION 2. The association a > A (o) is a functor from the cate-
gory of geometries, or equivalently the category of geomeiric lattices and
strong maps, to the category of commutative k-algebras.

PRroPOSITION 3. If (GHG’, S\JS’) is the coproduct (direct sum) in
the category of geometries of (G, S) and (G', S’), then A(GOHG')~A(G)
®A(G’). That is, A preserves coproducts.

ProoF. L(G®G')~L(G) X L(G") where the lattice structure on the
cartesian product is defined componentwise. The linear map of
B(G®G’) to B(G)®B(G') determined by (x, x')—x®x’, where
xEL(G) and x'&L(G’), is easily seen to be an algebra isomorphism,
and the proposition follows from Corollary 1.

Notice that 4(G) ® 4(G’) is the tensor product of commutative
algebras and is not the tensor product of graded algebras. It is for
this reason that A4 is considered a functor into the category of com-
mutative algebras rather than into the category of graded algebras.

Let e be a closed subset of S where (G, S) is a geometry. So e € L(G).
If 7(e) =n>0, choose ey, €, - - -, €,&.5 such that e=Ve,;. Let ann(e)
denote the annihilator of [] e; in 4(G). That is,

ann(e) = {y € 4(G)| y(I] e) = 0}.

ann(e) is a homogeneous ideal of 4(G). Let (G., ¢) denote the sub-
geometry [1, p. 4.1] of (G, S) on the closed subset e. Let 4 (G), denote
the subalgebra of 4(G) generated by the subset e of S. Let (G/e, S.)
denote the geometry associated to the contraction [1, p. 4.1] of (G, .S)
to the open subset .S—e (the contraction is, in general, only a pre-
geometry).

ProposITION 4. 4(G.)~A4(G)..

Proor. The image of the linear map of P(G,) into 4 (G) induced by
11 x}"'—)H x5, where each x;Ee, is 4(G)., and its kernel is precisely
J(Go).

ProrosiTION 5. 4 (G/e)=~A(G)/ann(e).

Proor. The geometric lattice L(G/e) is isomorphic to the interval
[e, 1] (1=S) of L(G) [1, p. 4.2]. The map ¢:L(G)—>[e, 1] defined by
g(x)=x\/e is a strong map. The induced surjection 4(s):4(G)
—A(G/e) given by x—x(]] e:;), x€A4(G), has kernel ann(e).

Propositions 4 and 5 also hold when the closed subset ¢ is replaced
by an arbitrary subset.
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3. Cohomology relative to a point of (G, S). Let pE.S where (G, S)
is a geometry. Define d(p) EEndir(4(G)) by d(p)(x) =px, xEA(G).
d(p) is an endomorphism of degree 1, and d(p)?=0 since p%=0 in
A(G). Letting m =7(G), there is induced a cochain complex

b= 400 B 400 2B ... 29 4022 4.
Let H*(G, p) =Z*(G, p)/B*(G, p) where, for 0<n<m, Z*(G, p) is
the kernel of 9(p):4,(G)—A,41(G) and B*(G, p) is the image of
(p):4,1(G)—A4,.(G). Clearly, Z*(G, p)=ann,(p)=homogeneous
component of degree # of ann(p). Recall that, for 0=#=<m, L, de-
notes the set of elements of L =L(G) of rank # and that, for x&EL,,
X1, %3, -+, %, &S were chosen so that x=Vx; Let L,(p)
= {xEL,,I p§x}. It is easily seen that ann,(p), 0 <#n <m, has a basis
consisting of the set

{IIx: |« € La(p) }
and, for each wE L,.1(p), the set

{Hx"'_ Hy"lyeme#y’ yVp = w}

where xEL, is fixed and x\/p =w. Let | T'| denote the cardinality of
a set 7. The following proposition is easily proved.

PROPOSITION 6. Let (G, S) be a geometry with | S| < . For any pES
and 0<n<r(G), HG, p) is a free k-module of dimension |L,|
—| Lasx(®)| = | La(p) ] -

For example, if (G, S) is the free geometry on a finite set S (L(G)
=Boolean algebra of all subsets of .S), then H*(G, p) =0 for all pES
and 0<n<|S|.

For a nontrivial example, let E be the set of edges of a finite graph
with no loops. Let (G, E) be the bond closure geometry of the graph.
That is, if TCE, then the G-closure of T consists of all edges both of
whose endpoints belong to the same connected component of 7. Let
e E. Then the dimension of HG, e) is the number of 3-circuits
(triangles) containing e. If the graph is connected and = is the num-
ber of edges in a maximal tree (m is the rank of the geometry), then
the dimension of H™1(G, e) is one less than the number of bonds in
the graph containing e.

Note also that if ¢: (G, S)—(G’, S’) is a morphism of geometries
and if o(p)#0, then A(0):4(G)—A(G’) induces a homomorphism
A(o): HM(G, p)—H(G', a(p)) for each 0 <n<r(G) where H*(G', a(p))
=0 for n=r(G").
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4. Remarks. The functor (G, S)—A4(G) could have been considered
as a functor from the category of pregeometries in which case the
algebra attached to a pregeometry would be isomorphic to the algebra
attached to the associated geometry. The construction of 4(G) can
be adapted to the definition of geometry in [2] at the expense of
clarity of notation.

Can the algebras 4 (G) be abstractly characterized? Can a charac-
terization be given of the ideals of A(G) arising as kernels of 4(0)
t4A(G)—A(G") where 0: (G, S)—(G’, S’) is a map of geometries? Can
(G, S) be recovered from A4 (G)? For which (G, S) is H*G, p) inde-
pendent of pE.S?
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