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Let Z> « { * = (*, • • • , zn)GCn:h(z) = Im * - £ ; | s* | 2 >0}, and 
B = dD = {z : h(z) = 0}. Writing z3- = xj+iy, we let j3 be the measure on 
B given by d/3 = dx\dx%dyi • • • dxndyn* D is a Siegel domain of Type 
11 which is the i mage of the uni t ball D = {z G Cn :£); | s* |2 < 1} under 
the generalized Cay ley transform: 

.1 + 21 i*k 
Zl H-> % ; Zh —> > # = 2, • • • , n* 

I — zx 1 — 2! 
Let N be the group of holomorphic automorphisms of D consisting of 
the elements (a, c)Gi?XCw~1 acting on D in the following way: 

n n 

(a, c):2i —>zi + a + 2iJ2 **& + * Z) I <frIS 
A«2 Jfe-2 

(ö, c)?**—>** + C*, fee 2. 

iV acts simply transitively on B. We will consider real-valued func­
tions on D which are harmonic with respect to the Laplace-Beltrami 
operator: 

( d2 JL d2 » d2 * d2 1 

I <92id2i 2 dSjfedS* 2 021^0* 2 dZidZ/g) 

In [2] Korânyi defined the following notion of admissible con­
vergence in D : let us call 

Ta(u) = <2 G Z>:Max | Re zx - Re «i | , Ê | »* - «* |2 

< ah(z),h(z) < l\ 
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a truncated admissible domain of aperture a a t uÇEB. We say that ƒ 
on D converges admissibly at u to / if limz+u.ttera(U)f(z)~l, for some 
a > 0 . 

The principal result of this note is the Theorem below, which is the 
analogue of results of Marcinkiewicz and Zygmund [3], Spencer [4], 
Calderón [ l ] , and Stein [S]. (This is often referred to as the Area 
theorem for harmonic functions.) Let 

/ df df df df df\ 
V / ^ ^ Â 1 ' 2 — , 2 i z 2 — + — ; • • • , 2 * * , — + — 1 

\ dZi dzi d%2 dzi dzn / 
and 

I df 12 w I df df I2 

|V/|2 = 4£— + E 2 i ^ + ~ . 
\dZi I 2 1 dZi dZk I 

Let £ be a measurable set in B and suppose that ƒ is a real-valued 
harmonic function in D. 

THEOREM, (a) If ƒ is admissibly bounded for each point of E then 

(1) f h(z)~n\ Vf\2dfx(z) < 00 
J ra(w) 

for almost every u in E and a>0, where d\x is Lebesgue measure. 
(b) If, for each point u of E, we can find an a such that the integral (1) 

is finite, then f converges admissibly at almost every point of E. 

The general outline of the proof follows Stein [5]. The differences 
arise from the fact that the Laplace-Beltrami operator is not uni­
formly elliptic. We first indicate how part (a) is proved. By a stan­
dard argument (see Calderón [l]) we may assume that E is compact, 
and ƒ is uniformly bounded in Ta(u), for a fixed, and all w £ £ . 

LEMMA 1. If f is bounded and harmonic in r«(0), then h(z)\df/dzi\ 
andh(zyi2\df/dzk\,k^2, are bounded in IV (0) for a' <a. 

This result can be proved by using the Poisson integral representa­
tion for functions defined on images of spheres under the Cayley 
transform. 

Let cûa(E) =Uwe^r«(^). We construct regions approximating œa(E). 
Write zÇzD as s = [x, l\t where x = Xi, z — (z2, • • • , zn), t = h(z). 
Siifce E is compact, Et= {[x, z]t: [x, z]oGE} is compact. For 0 < * < 1 
let r«(w)t2={ [#, z]r+t*:[x, z]r&Ta(u) and r+t2<l}. Then 

uGE forms an open cover of Et» Choose a finite sub-
cover for t~to<l and then for each t<h choose one in the following 
manner: if u\, • • • , uun) are the base points chosen for the cover of 
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Et, and if t*<t"<t0, then {uu • • • , Uk(n}D {u\, • • • , #*<(»)}• Let 

LEMMA 2. ƒ»«(*> | V/1 Hix{z) < oo. 

We prove this by first applying Green's theorem to œt. Then, using 
the estimates of Lemma 1 translated by the group N and the uniform 
boundedness of ƒ, we obtain Jcot\ V/| 2dfx(z) ^kfdutds when k is in­
dependent of t. Now we let t tend to 0, and observe that J^ds ^ M 
independently of t. Part (a) then follows from : 

LEMMA 3. Suppose ECZB is compact and f is locally bounded and 
positive in D. If ƒ««(#)ƒ dfx < oo, then Jv^u)h{z)^nf{z) dy,(z) < oo for all 
j3>0 and almost every UÇLE. 

We now outline the proof of part (b). 

LEMMA 4. If fTa(o)h(z)~n\vf\2dfx(z)<<x>, then h(z)\df/dzx\ and 
h{z)l^\df/dzk\ , & â 2, are bounded in Ta'(0)for a! < a. 

To prove this let 

d d 
Dl=s + , 

dzi dzi 

d Ô 

dzi dzu 
d d 

Dk, = — 2izk 1 ; 
dZi dZk 

d d l » / d d \ 
DQ = Zx h Zi h — 2J ( ** 1~ g* ) • 

dz\ dzi 2 2 \ dZk dZk / 
We then observe that if ƒ is harmonic then D0f, Drf, Dkf, Dk>f axe 
harmonic, and thus can be represented as Poisson integrals. Now 
| V/l2 dominates A | A / K | W | 2 . \Dv f\2 and h"l\D0\

2 in r«(0); and 
the latter dominate h\df/dzi\2 and \df/dzk\

2 for k^2, in r«(0). Now, 
using Green's theorem and Lemma 4, we have 

f fdsZk f \f\ds + k' f |v/|U„. 
J Out ** V<»t J »t 

LEMMA 5. Suppose EC.B is compact, ƒ is nonnegative and locally 
bounded in D, and for each u Ç.E, there exists an a > 0 such 
that fva(M)f dix < oo. Then for every e>0 and /3 > 0 there exists a compact 
set FCE such that meas(E\F) <€, and fd<*B(F)h(z)nf(z)dfx(z) < oo. 
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Applying this to the inequality above we have fd(atf
2ds g M in­

dependently of L Now a standard argument (see Stein [5]) shows that 
\f(z) | ^ cg{z) +c' in o)a(E) where g is the Poisson integral of some func­
tion in L2(B). The result now follows from Korânyi [2]. 
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