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Let M be an w-dimensional, differentiate manifold with a (possi­
bly empty) boundary dM. A smooth, codimension-one foliation of M 
is a decomposition of M into disjoint, connected subsets, called the 
leaves of the foliation, with the following properties: 

(i) At each point p£.M there exist local C°°-coordinates 
(#i, • • • , xn) such that in a neighborhood of p the leaves are de­
scribed by the equations xn = constant. 

(ii) Each component of dM is a leaf. 
In 1951 George S. Reeb constructed a smooth, codimension-one 

foliation of Sz [4], and it has since been shown by Lickorish [2], and 
independently by Novikov and Zieschang, that, in fact, every com­
pact, orientable 3-manifold can be so foliated. By using the poly­
nomial p(ZQ, Z I , Z2) —Zl+Zl+Zl in complex 3-space and the theo­
rems in [3], we prove the following: 

THEOREM 1. There exists a smooth, codimension-one foliation of S* 
having one compact leaf B such that: 

(a) B is diffeomorphic to S1XL where L is a circle bundle over a 2-
torus, T2. 

(b) All the noncompact leaves of one component of the foliation are 
diffeomorphic to R2 X T2. 

(c) All the noncompact leaves of the other component have the homo-
topy-type of a bouquet S2V • • • V'S2 of' eight 2-spher es. 

By using Theorem 1 and an inductive procedure, we then establish 

THEOREM 2. There exist smooth, codimension-one foliations of each 
of the spheres S2h+Z for fe = l , 2 , 3 , • • • . {The sequence begins: Sh, S7, 
5 " , S19, S35, • • • .) 

COROLLARY 1. For n = 2k+l, fe = l, 2, 3, • • • , there exist smooth, 
codimension-one foliations of the manifolds D2XSn and D2XVn+i,2 
where F „ + M = S O ( w + l ) / S O ( w ~ l ) . 

COROLLARY 2. For n = 2*+4, & = 1, 2, 3, • • • , there exist smooth, 
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codimension-one foliations of the classical groups SO(w), SU(w/2), 
Sp(w/4) and their associated Stiefel manifolds. {For the Sp-case we must 
have k>l.) 

Let Cw+1 denote (n + 1)-dimensional, complex number space and 
set 

£2n+i = | z e c w + 1 : | z | 2 = l } . 

We consider, for each integer d, the compact, differentiate manifold 

?n-\d) = {ze s2n+1:zt + zl + zl+... + zl = o}. 
If d== ± l ( m o d 8), then S2n_1(^) is a standard {In — l)-sphere which 
is knotted in S2n+l [l, §11 ]. Using Corollary 1 and [3, Theorem 4.8], 
we obtain 

COROLLARY 3. For n = 2k-l + l, k = 2, 3, 4, • • • , and for each 
d = ± l ( m o d 8) there exists a smooth, codimension-one foliation of 
S2n+l having as a compact leaf the boundary of a tubular neighborhood of 
the knotted sphere H,2n-l{d). 

We then change our approach and study the natural action of 
SO{n) on S2**""1^) (cf. [l, §5]). By working with the orbit space and 
using Corollary 1, we are able to prove 

THEOREM 3. For n = 2k+3, k = l, 2, 3, • • • , and f or any d, there 
exists a smooth, codimension-one foliation of the manifold H/n{d). 

Corollary 1 is due to Alberto Verjovsky whose conversation was of 
great value to me during the preparation of this work. Detailed 
proofs of the above theorems will appear elsewhere. 
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