CODIMENSION-ONE FOLIATIONS OF SPHERES

BY H. BLAINE LAWSON, JR.

Communicated by P. E. Thomas, October 2, 1970

Let M be an n-dimensional, differentiable manifold with a (possibly empty) boundary ∂M . A smooth, codimension-one foliation of M is a decomposition of M into disjoint, connected subsets, called the leaves of the foliation, with the following properties:

- (i) At each point $p \in M$ there exist local C^{∞} -coordinates (x_1, \dots, x_n) such that in a neighborhood of p the leaves are described by the equations $x_n = \text{constant}$.
 - (ii) Each component of ∂M is a leaf.

In 1951 George S. Reeb constructed a smooth, codimension-one foliation of S^3 [4], and it has since been shown by Lickorish [2], and independently by Novikov and Zieschang, that, in fact, every compact, orientable 3-manifold can be so foliated. By using the polynomial $p(Z_0, Z_1, Z_2) = Z_0^3 + Z_1^3 + Z_2^3$ in complex 3-space and the theorems in [3], we prove the following:

THEOREM 1. There exists a smooth, codimension-one foliation of S⁵ having one compact leaf B such that:

- (a) B is diffeomorphic to $S^1 \times L$ where L is a circle bundle over a 2-torus, T^2 .
- (b) All the noncompact leaves of one component of the foliation are diffeomorphic to $R^2 \times T^2$.
- (c) All the noncompact leaves of the other component have the homotopy-type of a bouquet $S^2 \lor \cdots \lor S^2$ of eight 2-spheres.

By using Theorem 1 and an inductive procedure, we then establish

THEOREM 2. There exist smooth, codimension-one foliations of each of the spheres $S^{2^{k+3}}$ for $k=1, 2, 3, \cdots$. (The sequence begins: S^5 , S^7 , S^{11} , S^{19} , S^{35} , \cdots .)

COROLLARY 1. For $n=2^k+1$, $k=1, 2, 3, \cdots$, there exist smooth, codimension-one foliations of the manifolds $D^2 \times S^n$ and $D^2 \times V_{n+1,2}$ where $V_{n+1,2} = SO(n+1)/SO(n-1)$.

COROLLARY 2. For $n=2^k+4$, $k=1, 2, 3, \cdots$, there exist smooth,

AMS 1969 subject classifications. Primary 5736; Secondary 5734.

Key words and phrases. Foliation, component of a foliation, orbit space, Lie group, Stiefel manifold.

codimension-one foliations of the classical groups SO(n), SU(n/2), Sp(n/4) and their associated Stiefel manifolds. (For the Sp-case we must have k > 1.)

Let C^{n+1} denote (n+1)-dimensional, complex number space and set

$$S^{2n+1} = \{ Z \in \mathbf{C}^{n+1} \colon |Z|^2 = 1 \}.$$

We consider, for each integer d, the compact, differentiable manifold

$$\Sigma^{2n-1}(d) = \left\{ Z \in S^{2n+1} : Z_0^d + Z_1^2 + Z_2^2 + \dots + Z_n^2 = 0 \right\}.$$

If $d \equiv \pm 1 \pmod{8}$, then $\Sigma^{2n-1}(d)$ is a standard (2n-1)-sphere which is knotted in S^{2n+1} [1, §11]. Using Corollary 1 and [3, Theorem 4.8], we obtain

COROLLARY 3. For $n=2^{k-1}+1$, k=2, 3, 4, \cdots , and for each $d\equiv \pm 1 \pmod{8}$ there exists a smooth, codimension-one foliation of S^{2n+1} having as a compact leaf the boundary of a tubular neighborhood of the knotted sphere $\Sigma^{2n-1}(d)$.

We then change our approach and study the natural action of SO(n) on $\Sigma^{2n-1}(d)$ (cf. [1, §5]). By working with the orbit space and using Corollary 1, we are able to prove

THEOREM 3. For $n=2^k+3$, $k=1, 2, 3, \cdots$, and for any d, there exists a smooth, codimension-one foliation of the manifold $\Sigma^n(d)$.

Corollary 1 is due to Alberto Verjovsky whose conversation was of great value to me during the preparation of this work. Detailed proofs of the above theorems will appear elsewhere.

BIBLIOGRAPHY

- 1. F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., no. 57, Springer-Verlag, Berlin and New York, 1968. MR 37 #4825.
- 2. W. B. R. Lickorish, A foliation for 3-manifolds, Ann. of Math. (2) 82 (1965), 414–420. MR 32 #6488.
- 3. J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, no. 61, Princeton Univ. Press, Princeton, N. J., 1968. MR 39 #969.
- 4. G. Reeb, Sur certains propriétés topologiques des variétés feuilletées, Actualités Sci. Indust., no. 1183, Hermann, Paris, 1952. MR 14, 1113.

I.M.P.A., Rio de Janeiro, Brazil

University of California, Berkeley, California 94720