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Let M be an n-dimensional, differentiable manifold with a (possi-
bly empty) boundary dM. A smooth, codimension-one foliation of M
is a decomposition of M into disjoint, connected subsets, called the
leaves of the foliation, with the following properties:

(i) At each point pEM there exist local C*-coordinates
(%1, + -+ -, %) such that in a neighborhood of p the leaves are de-
scribed by the equations x, =constant.

(i) Each component of 0/ is a leaf.

In 1951 George S. Reeb constructed a smooth, codimension-one
foliation of S® [4], and it has since been shown by Lickorish [2], and
independently by Novikov and Zieschang, that, in fact, every com-
pact, orientable 3-manifold can be so foliated. By using the poly-
nomial p(Zq, Zy, Z5) =Z3+2Z3+2Z3 in complex 3-space and the theo-
rems in [3], we prove the following:

THEOREM 1. There exists a smooth, codimension-one foliation of S°
having one compact leaf B such that:

(a) B is diffeomorphic to S* XL where L is a circle bundle over a 2-
torus, T2.

(b) All the noncompact leaves of one component of the foliation are
diffeomorphic to R2X T2,

(c) All the noncompact leaves of the other component have the homo-
topy-type of a bougquet S?\/ - - - \/ S? of eight 2-spheres.

By using Theorem 1 and an inductive procedure, we then establish

THEOREM 2. There exist smooth, codimension-one foliations of each

of the spheres S* for k=1, 2, 3, - - - . (The sequence begins: S°, S,
SS9 G .. L)
COROLLARY 1. For n=2%4+1, k=1, 2, 3, - - -, there exist smooth,

codimension-one foliations of the manifolds D?XS* and D?*X Vi,
where Viap,2=S0(n+1)/SO(n—1).

COROLLARY 2. For n=2%+4, k=1, 2, 3, - . -, there exist smooth,
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codimension-one foliations of the classical groups SO(n), SU(n/2),
Sp(n/4) and their associated Stiefel manifolds. (For the Sp-case we must
have k>1.)

Let C**! denote (n41)-dimensional, complex number space and
set

S2ntl = {Z € Crti: IZIz = 1}.
We consider, for each integer d, the compact, differentiable manifold

ML+ L+ Zat o+ Za =0}

If d= +1(mod 8), then 227~1(d) is a standard (2#—1)-sphere which
is knotted in S2n+! [1, §11]. Using Corollary 1 and [3, Theorem 4.8],
we obtain

=) = {zes

CoRroOLLARY 3. For n=2%¥14+1, k=2, 3, 4, - .-, and for each
d=+1(mod 8) there exists a smooth, codimension-one foliation of
St having as a compact leaf the boundary of a tubular neighborhood of
the knotted sphere Z*—1(d).

We then change our approach and study the natural action of
SO(n) on 22=1(d) (cf. [1, §5]). By working with the orbit space and
using Corollary 1, we are able to prove

THEOREM 3. For n=2%4-3, k=1, 2, 3, - - -, and for any d, there
exists a smooth, codimension-one foliation of the manifold 2"(d).

Corollary 1 is due to Alberto Verjovsky whose conversation was of
great value to me during the preparation of this work. Detailed
proofs of the above theorems will appear elsewhere.
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