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1. Introduction. Let X = (#(£), £*, $ïïl*, Px) be a right continuous 
Markov process on a state space (E, (B).2 Let L be a fixed Banach 
space. A multiplicative operator functional (MOF) of (X, L) is a 
mapping (/, co) —>M(t, o>) of [0, co)Xfl to bounded operators on L 
which possesses the following properties: 

(la) œ—>M(t> co)/ is 3TC* measurable for each t ̂  0, ƒ £ L . 
(lb) t—*M(t, co)/ is right continuous a.s. for each ƒ ÇzL. 
(le) M(£+s, œ)f=M(t, <a)M(s, 0to))f a.s. for each 5, J^O, ƒ £ £ . 
(Id) ikT(0, co) is the identity operator on L. 
If M is a multiplicative operator functional of (X, L) the expecta­

tion semigroup is defined on the direct sum Banach space L = 0 EL by 
the equation 

(1.1) (?(/)ƒ)* = Ex[M(t, «)ƒ,<«.«>]. 

The MOF concept has appeared in several places recently. We were 
led to the idea by the work of Griego and Hersh [4], [5] who con­
structed examples of an MOF when X is a Markov chain with a 
finite number of states and L is arbitrary. Here M(t, co) is a finite 
random product of semigroups. Earlier Babbitt [ l ] had studied the 
case X = Wiener process on Rn, L = finite-dimensional vector space. 
In this case M{t) is a solution to a system of Itô stochastic differential 
equations. If X is a Poisson process and L is a Banach space of con­
tinuous functions on i?1, we can specialize the MOF concept to repre­
sent the semigroups studied by Çinlar and Pinsky in a problem in 
storage theory. In this case the infinitesimal operator of the associ­
ated semigroup is an integro-differential operator. Further applica­
tions will be discussed in another publication. 

2. Main results. Here we will give the notations and state the 
main results. Proofs will not be given. Detailed proofs will appear 
elsewhere. 
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If L is a Banach space and JE is an arbitrary index set, L is the 
Banach space of all tuples f:=(fx)xGE where ƒ * £ £ for each x; L is 
equipped with componentwise addition and scalar multiplication; 
we use the norm ||/||z = supa!||/x||. A contractive MOF is an MOF with 
the additional property that \\M(t, <a)f\\ é\\f\\ a.s. for ^ 0 , / £ L . 

If X has no instantaneous states, let 0 = T O < T I < T 2 < • • • be the 
jump times of x(t) and let N(t) be the number of jumps in [0, / ] . 

THEOREM 1. Let E= {l , 2, • • • , N} and let X be a finite Markov 
chain on E with f = + °°. Let M be a contractive multiplicative operator 
functional of (X, L). Then there exist strongly continuous contraction 
semigroups T\{t), • • • , TN(1) on Land bounded operators {lLap}lza^pzN 
on L such that for t ̂  0, ƒ £ L , 

(2 .1) M(t)f = n ^ s ( r , - i ) (ji - Ti-l) ü*<r<-i>*<r<) Tx(TNii)) (t — TN(t)) ƒ . 

The key step in the proof of this result is the observation that 
M (t, co) is a semigroup up until the first jump time of X. More pre­
cisely we have a 

LEMMA. IfOSs, tandt+s<Ti(u>), then 

M(t+s, co) = M(t, œ)M(s, co) a.s. 

In the case of a continuous MOF we can specialize the form (2.1) 
and also relax the hypothesis. 

THEOREM 2. Let E= {l , 2, • • • , N} and let X be a finite Markov 
chain on E with f = + °°. Let M be a multiplicative operator functional 
of (X, L) such that the mapping t-*M(t> co)/ is continuous from [0, <*>) 
to L for each fÇïL, co££2. Then there exist strongly continuous semi­
groups Ti(t), - • • , TN(t) on L such thatt for fÇEL, 

(2.2) M(t)f = r,<o)(Ti)ZWi)(r3 — r 0 • • • Tx(jm))(t - rNit))f. 

REMARK. The form (2.2) is termed a random evolution by Griego 
and Hersh. In some sense M(t) evolves by the random equation 
dM/dt~M(t)AX(t) where Ax is the infinitesimal operator of the 
semigroup Tx(t). 

3. Examples and other applications. We limit this discussion to 
two classes of examples of MOF's. Other applications will be dis­
cussed elsewhere. 

I. Let X= (x(t),+ °°, 9TC*, Px) be a separable Wiener process on jRn. 
Let Si , • • • , Bn and V be bounded continuous complex NXN 
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matrix-valued functions on Rn and let D(B;V) be the closure in 
L2(Rn; CN) of the differential operator 

1 n / d V n d 
D(B; V) - - £ ( — ) + S Bj(x) — + V(x) 

with domain Co(Rn; CN). Babbitt [ l ] has shown that there exists a 
complex NXN matrix-valued function a(t, œ)=a on QX[0, oo ) such 
that a is adapted to $TC*, the map t—xxty, oo) is continuous on [0, oo) 
a.s., and a is a solution of the stochastic integral equation 

«(/, a>) =l+jt f <*(?, Ü>)BJ(X(T)) dxj(r) + f a{r, a)V(x(r)) dr 
i=i J o J o 

a.s. with respect to Px\ here I is the identity matrix and 
n /» t 

X) I a(r, o))Bj(x(r)) dxj(r) 
y-i J o 

is an Itô stochastic integral. Furthermore a satisfies the bound 
Ex {| a(t) | 2 } ^ QT for some constant QT independent of x1 for 0 g £ g T. 

Now we note that a (£+- , co) and a(t> co)ce(-, 0*co) (juxtaposition 
means matrix multiplication) both solve the same stochastic integral 
equation. Thus by the uniqueness theorem for stochastic integral 
equations (see [6, p. 54 ff.]) they must be equal a.e. Thus a(t% co) 
satisfies the multiplicative law a(t+s, co)—a(t, o))a(s, 0<co). The 
formula 

Tt<t>(x) = E,[a(t, <*)4>(x(t))] 

according to Babbitt defines a semigroup on L2(Rn; C) whose in­
finitesimal operator is D(B\V). Conversely, if a(t, cS) is a matrix 
which satisfies the above multiplicative law together with certain 
smoothness conditions, then a satisfies a stochastic integral equation 
of the above type, as we shall show in another publication. 

II . As a second example, let X be a Poisson process with rate a 
(0<a<oo) with jump times 0 < r i < r 2 < • • • < < » . Let L be the 
Banach space of all continuous functions on [0, oo ) which vanish at 
oo. Let T(t) be the group on L with T(t)f(x)=f(kt(x)) where kt(x) 
is a solution of the o.d.e kt= —r(kt), k0(x)=x. Here r is a strictly 
increasing differentiable function with r(0) = 0 . Let II be the convolu­
tion operator on L given by TLf(x)=fo f(x+y)v(dy), where v is a 
fixed probability measure on [0, oo). Then the formula 

M{t) = r(r1)nr(r2 - n)n . . . nr(/ - rN(t)) 

defines a multiplicative operator functional on (X, L) with the 
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property that the expectation semigroup leaves invariant the class 
{ƒ=(ƒ, ƒ , • • • ) » ƒ € : £ } • A calculation shows that the infinitesimal 
operator of the expectation semigroup is given by an extension of the 
operator 

Af=- r(x) ^ + af°(J(x + y)- f(x))v(dy) 
dx •/o 

acting on smooth functions. This semigroup and its limit as /—*oo 
were considered in detail in [2], 

The author recently became aware of the work of D. W. Stroock 
(Comm. Pure Appl. Math. 23 (1970), 447-457). This paper extends 
the work of Babbitt to include, in particular, coefficients (Bj, V) 
which depend on / and are merely bounded and measurable. 
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