APPLICATIONS OF THE SEMISIMPLE SPLITTING

BY RICHARD TOLIMIERI

Communicated by L. Auslander, September 2, 1970

Let S be a solvable simply connected analytic group. A closed subgroup C of S will be called uniform in S if the quotient space S/C is compact. We will make the assumption throughout the rest of the paper that a closed uniform subgroup C of S has the property that it contains no normal analytic subgroup of S. Let C be a closed uniform subgroup of S. In [4], G. D. Mostow proved that the intersection of C with the nil-radical of S must be uniform in the nil-radical of S. L. Auslander in [6], [7] exploited this fact to relate the structure of C to the structure of S. The object of this paper is to show how the semisimple splitting of S, introduced in [1] and studied further in [2] and [3], provides a convenient language with which to deal with the main theorems of [4], [6] and [7].

Preliminaries. We shall need the following ideas from the theory of algebraic groups. Let X, Y, and Z be subgroups of Gl(n, R), the group of all n by n real matrices. We denote the algebraic hull of X by $\mathfrak{C}(X)$, and the group of commutators of X and Y by (X, Y). Then

- (a) $\alpha((X, Y)) = \alpha((\alpha(X), \alpha(Y))).$
- (b) If X is a solvable algebraic group then we can write

$$X = U \cdot T$$
 (semidirect product)

where U is the collection of all unipotent matrices in X and T is a maximal completely reducible subgroup of X. Moreover if $T^{\#}$ is another maximal completely reducible subgroup of X then there is an x in U such that $xTx^{-1}=T^{\#}$.

We will require also the following facts from the theory of nilpotent Lie groups. By a real nilpotent group N we mean a simply connected nilpotent analytic group. We denote the Lie algebra of N by L(N). The exponential map defines a homeomorphism of L(N) onto N. By a lattice of a vector space V we mean the collection of all integer combinations of a basis of V. A discrete uniform subgroup C of N is called

AMS 1969 subject classifications. Primary 2050; Secondary 2048, 1450.

Key words and phrases. Algebraic group, the algebraic hull, unipotent matrix, semisimple matrix completely reducible group, nilpotent group, nil-radical solvable group, simply connected, lattice, discrete, uniform, semisimple splitting, Birkhoff embedding theorem, eigenvalues semidirect product, Fitting one-space, first cohomology group.

a lattice of N if it is the exponential of a lattice in L(N). Given a discrete uniform subgroup C of N and a group A of automorphisms of N such that A(C) = C, there exists a lattice C^{\sharp} of N containing C as a subgroup of finite index such that $A(C^{\sharp}) = C^{\sharp}$. We will also assume that the reader is familiar with the work of Mal'cev [5] whose results we will often state in the language of algebraic groups.

The semisimple splitting. Let S be a simply connected solvable analytic group having nil-radical H. We will state those properties of the semisimple splitting of S needed in what follows.

THEOREM 1. There exists a unique group $S^{\#}$ containing S as a normal subgroup with the following properties:

- (a) $S^{\#}$ has a semidirect product decomposition $N \cdot T$ where N is the nil-radical of $S^{\#}$, and T is an abelian analytic group acting faithfully on N as a group of semisimple automorphisms. Any such decomposition of $S^{\#}$, $S^{\#} = N \cdot T$ will be called a Mal'cev decomposition of $S^{\#}$ and T will be called a Mal'cev factor of $S^{\#}$. We denote the projection of $S^{\#}$ onto N by P_T and the projection of $S^{\#}$ onto T by t_T .
- (b) Let $S^{\#} = N \cdot T = N \cdot T'$ be two Mal'cev decompositions of $S^{\#}$. Then there is an x in H such that $xTx^{-1} = T'$.
- (c) Let $S^{\sharp} = N \cdot T$ be a Mal'cev decomposition of S^{\sharp} . Then the restriction of P_T to S is a homeomorphism of S onto N.
 - (d) S and N generate $S^{\#}$.
 - (e) H is contained in N and $S^{\#}/H$ is abelian.
 - (f) There exists a faithful finite dimensional representation

$$\beta: S^{\#} \to \mathrm{Gl}(n, R)$$

such that $\beta(N)$ is the collection of all unipotent automorphisms in $\alpha(\beta(S^{\sharp}))$, and for any Mal'cev factor T of S^{\sharp} , $\beta(T)$ is a group of semisimple matrices.

Statements (a)-(e) can be found in [1]. Statement (f) follows from the Birkhoff imbedding theorem and can be found in [9].

Let C be a closed uniform subgroup of S. By (f) we lose no generality if we assume in all that follows that S^{\sharp} is a matrix group. By (b) of the preliminary section we can write $\mathfrak{C}(C) = U_C \cdot T_C$ where U_C is the collection of all unipotent matrices in $\mathfrak{C}(C)$ and T_C is a maximal completely reducible subgroup. Let T' be a maximal completely reducible subgroup of $\mathfrak{C}(S)$ containing T_C . Since maximal completely reducible subgroups of $\mathfrak{C}(S)$ are conjugate over (S, S) we can find a Mal'cev factor T of S^{\sharp} such that $T \subset T'$. Hence we can write a Mal'cev de-

composition $S^{\#} = N \cdot T$ where $t_T(C) \subset \alpha(C)$. We shall say in this case that the Mal'cev decomposition $N \cdot T$ of $S^{\#}$ is compatible with C.

Mostow's theorem. We shall assume the following simple lemma. (See Lemma 6 in [4].)

LEMMA 1. Let Δ be a lattice in a vector space V. Then there is an $\epsilon > 0$ depending solely on the dimension of V such that if A is an automorphism of V such that $A(\Delta) = \Delta$ and all the eigenvalues of A are within ϵ of one, then A = I, where I denotes the identity map on V.

LEMMA 2. Let S be a simply connected solvable analytic group with nil-radical H. Then if S has a discrete uniform subgroup C such that $S = (HC)^-$, S is nilpotent. We are using a bar to the superior of a subgroup of S to denote the closure of the subgroup in S.

PROOF. Let $N \cdot T$ be a Mal'cev decomposition of S^{\sharp} compatible with C. Let $M = \mathfrak{A}(C \cap H)$ and C' = MC. Since C'/C is compact, C' is a closed subgroup of S. Hence $P_T(C')$ is a closed uniform subgroup of N that is invariant under $t_T(C')$. The connected component of the identity of $P_T(C')$ is M. Moreover M is a normal subgroup of S^{\sharp} . Since T is completely reducible we must show that $\mathrm{ad}_M T = I$ and that T induces the identity on N/M. If $\mathrm{ad}_M T \neq I$ then there is an element c in C such that $\mathrm{ad}_M c$ is not unipotent but has eigenvalues arbitrarily close to one. But $\mathrm{ad}_M c$ takes $C \cap H$ onto itself, hence we contradict Lemma 1. Thus $\mathrm{ad}_M T = I$. Since $P_T(C')/M$ is a discrete uniform subgroup of N/M, $(C, P_T(C')) \subset M$ implies that T induces the identity on N/M.

LEMMA 3. Let S be a simply connected solvable analytic group with nil-radical H. Let C be a closed uniform subgroup of S. Then the identity component C_0 of C is contained in H. Moreover if C/C_0 is nilpotent, then C is nilpotent.

PROOF. Let $N \cdot T$ be a Mal'cev decomposition of S^{\sharp} compatible with C. Since C is uniform in S it follows that $N \subset \mathfrak{C}(C)$. Hence C_0 is normalized by N and $C_0 \cap H$ is a normal analytic subgroup of N. Take x in C_0 and write x = nt where n is in N and t is in T. Let K be the ideal in N generated by (T-I)N. Then K is a normal analytic subgroup of S^{\sharp} contained in $C_0 \cap H$. Hence since we are assuming that C_0 contains no nontrivial normal analytic subgroup of S we have that t = I. Then $\mathrm{ad}_H C$ consists of unipotent automorphisms and HC_0 is a normal nilpotent analytic subgroup of S. Hence $C_0 \subset H$. Assume now that C/C_0 is nilpotent. Then $\mathrm{all}(C)/C_0$ is nilpotent. Take x in C and write x = nt.

Then $(t-I)N \subset C_0 \cap H$ and we can argue as before to conclude that C operates on N by unipotent automorphisms. Hence C is nilpotent.

THEOREM 2. Let C be a closed uniform subgroup of a simply connected solvable analytic group S. Let H be the nil-radical of S. Then HC is a closed subgroup of S. Moreover $C_0 \subset H$.

PROOF. Let G be the identity component of $(HC)^-$. We must show that H=G. Let $C'=C\cap G$. Then C' is a closed uniform subgroup of S and $S=(HC')^-$. Clearly C_0 is a normal subgroup of G. Hence by Lemma 2, G/C_0 is nilpotent. Arguing as in Lemma 3, we can show that $\mathrm{ad}_H C'$ consists of unipotent automorphisms. Hence G is nilpotent.

Auslander's theorems. Let \mathbb{Z}^n denote the cartesian product of the integers taken n times. Let \mathbb{R}^n denote the cartesian product of the reals taken n times.

THEOREM 3. A necessary and sufficient condition for a simply connected solvable analytic group S to contain Z^n as a discrete uniform subgroup is that S satisfy the diagram

$$1 \rightarrow R^s \rightarrow S \rightarrow R^t \rightarrow 1$$

where

- (a) s+t=n,
- (b) the extension is the split extension,
- (c) the automorphisms of R^s induced by R^t form a compact group.

PROOF. Assume that S contains Z^n as a discrete uniform subgroup. Let $N \cdot T$ be a Mal'cev decomposition of $S^{\#}$ compatible with Z^n . Since $P_T(Z^n)$ is a discrete uniform subgroup of N centralized by $\mathfrak{C}(Z^n)$, we have that Z^n is a discrete uniform subgroup of N. Hence N is abelian and T is compact. From $(N,T) \subset H$ and T being completely reducible, it follows that there is a subspace $N^{\#}$ of N such that $N = N^{\#} \oplus H$ as a vector space and $(T,N^{\#})=(1)$. Let $S'=P_T^{-1}(N^{\#})$. Then $S=H \cdot S'$ as a semidirect product.

The converse is trivial.

Theorem 4. Let S be a simply connected solvable analytic group and let C be a closed uniform subgroup of S. Assume that C/C_0 is nilpotent. Then there is a real nilpotent group N such that C is contained in N as a closed uniform subgroup, and a compact abelian analytic group T of automorphisms of N such that $S \subset N \cdot T$. In fact $S^{\#} = N \cdot T$.

PROOF. Since C/C_0 is nilpotent, Lemma 3 implies that C is nil-

potent. Moreover if $N \cdot T$ is a Mal'cev decomposition of $S^{\#}$ compatible with C we have also that $C \subset N$ as a closed uniform subgroup.

In terms of the semisimple splitting many cohomological arguments in solvable Lie theory depend upon the following lemma. (See Lemma 2.1 of [2].)

LEMMA 4. Let T be an abelian analytic group of semisimple automorphisms of a vector space V. Assume that the Fitting one-space of T in V is trivial. Then the first cohomology group vanishes, i.e. $H^1(T, V) = 0$.

The following theorem is easily seen to imply Theorem 2 of [7].

THEOREM 5. Let N be a real nilpotent group and let T_i , i=1, 2, be abelian analytic groups of semisimple automorphisms of N. Let H be a normal analytic subgroup of N invariant under T_i , i=1, 2, such that,

- (a) N/H is abelian,
- (b) T_i , i=1, 2, induce the identity map on N/H,
- (c) T_1 restricted to H is equal to T_2 restricted to H. Let $\alpha: T_1 \rightarrow T_2$ be the induced isomorphism.
- (d) Let M be the last term in the lower central series of N. Then the group of automorphisms on N/M induced by T_1 and T_2 coincide.

Then there is an isomorphism $\bar{\alpha}$ of N such that the map

$$\overline{\alpha}: N \cdot T_1 \to N \cdot T_2$$

given by $\overline{\alpha}(n, t) = (\overline{\alpha}(n), \alpha(t))$ for n in N and t in T_1 , defines an isomorphism of the semidirect product $N \cdot T_1$ onto the semidirect product $N \cdot T_2$.

PROOF. Choose x in N such that (T, x) = (1). Consider the map $\eta: T_2 \rightarrow M$ given by $t(x) = \eta(t) \cdot x$ for t in T_2 . Write $M = M_1 \oplus M_2$ where M_1 is the Fitting one-space of T and M_2 is a subspace of M complementary to M_1 and invariant under T_2 . Consider the maps $\eta_i\colon T_2 \rightarrow M_i$, given by $\eta(t) = \eta_1(t)\eta_2(t)$. Then η_2 is a cocycle from T_2 to M_2 . Thus there is an h in M_2 such that $\eta_2(t) = (t, h)$ for all t in T_2 . Let $x' = h^{-1}x$. Then it is easy to see that $(T_2, x') = (1)$. Now let X be a subspace of N such that $N = H \oplus X$, and (T, X) = (1). Let $x_i, i = 1, \dots, n$, be a basis for X. Choose h_i in M such that $(T_2, h_i^{-1}x_i) = (1)$. Clearly there is an isomorphism $\bar{\alpha}$ of N which maps x_i onto $h_i^{-1}x_i$ and which acts by the identity map on H.

References

L. Auslander and L. Green, G-induced flows, Amer. J. Math. 88 (1966), 43–60.
MR 33 #7456.

- 2. L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968), 295-313. MR 37 #344.
 - 3. R. Tolimieri, Foundations of solvable Lie groups, J. Algebra (to appear).
- 4. G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954), 1-27. MR 15, 853.
- 5. A. Mal'cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32; English transl., Amer. Math. Soc. Transl. (1) 9 (1962), 276-307. MR 10, 507.
- 6. L. Auslander and M. Auslander, Solvable Lie groups and locally euclidean Riemann spaces, Proc. Amer. Math. Soc. 8 (1958), 933-941. MR 21 #2021.
- 7. L. Auslander, Solvable Lie groups acting on nilmanifolds, Amer. J. Math. 82 (1960), 653-660. MR 23 #A241.
- 8. ——, On a problem of Phillip Hall, Ann. of Math. (2) 86 (1967), 112–116. MR 36 #1540.
- 9. G. Birkhoff, Representability of Lie algebras and Lie groups by matrices, Ann. of Math. 38 (1937).

YALE UNIVERSITY, NEW HAVEN, CONNECTICUT 06520