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1. Introduction. This note is an announcement of results concern­
ing the local deformation theory of subgroups of a Lie group. Let G be 
a real (resp. complex) Lie group and let M be a real (resp. complex)-
analytic manifold. Roughly speaking, an analytic family of Lie sub­
groups of G, parametrized by M, is an analytic submanifold 3C of 
GXM such that each "fibre" Ht (tGM) is a Lie subgroup of G; here 
the "fibre" Ht is defined by JCH(GX {t})=HtX {/}. (See §2 for a 
precise definition of an analytic family of Lie subgroups.) Our main 
result concerning such families is 

THEOREM A. Let X = (Ht)tsM be an analytic family of Lie subgroups 
of G, let toÇzM and let H = HtQ. Let K be a Lie subgroup of H such that 
the component group K/K° is finitely generated and such that the Lie 
group cohomology space Hl(K, Q/Ï)) vanishes. Then there exists an open 
neighborhood U of to in M and an analytic map j8: U-+G such that 
KQP(t)HtP(t)~lfor every tE U. 

Here g (resp. Ï)) denotes the Lie algebra of G (resp. H) and the 
üT-module structure of g/ï) is determined by the adjoint representa­
tion of K on g. 

Theorem A generalizes the result of A. Weil [6, p. 152] which states 
that if T is a discrete, finitely generated subgroup of G such that 
fPÇT, ô) =0, then V is "rigid". It also generalizes results of the author 
[4], [5] on deformations of subalgebras of Lie algebras to the case of 
Lie subgroups. The proof of Theorem A depends heavily on the 
analyticity assumptions, although we suspect that the C00 version of 
the theorem is also true. 

If G acts as an analytic transformation group on the analytic mani­
fold M and if all orbits of G on M have the same dimension, then it 
can be shown that the connected isotropy groups (G°t)teM form an 
analytic family of Lie subgroups of G, and hence Theorem A applies. 
For example, let K be a maximal compact subgroup of G?. Then 
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Hl{K, g/gt) = 0 and thus there exists a neighborhood U of t such that 
G°s contains a subgroup conjugate to K for every s E U. For the case of 
algebraic transformation groups (over C) one gets considerably 
stronger theorems along the same line. 

2. Analytic families of Lie subgroups. Analytic manifolds and Lie 
groups are taken over either the field R of real numbers or the field C 
of complex numbers. Analytic submanifolds and Lie subgroups are 
defined as in [2]; in particular analytic submanifolds and Lie sub­
groups are not required to have the topology induced by the ambient 
manifold. The Lie algebra of a Lie group G will be denoted by the 
corresponding German letter g and the connected component of the 
identity in G will be denoted by G°. 

DEFINITION 2.1. Let G be a Lie group and let M be an analytic 
manifold. Then an analytic family of Lie subgroups of G, parametrized 
by M, is an analytic submanifold X of GXM which satisfies the 
following conditions: 

(a) Let 7TJI/: JC—>ikf denote the composition prMoi1 where i:5C—»(? 
XM is the inclusion map and prjif is the projection GXM-+M. Then 
TTM is surjective and is a submersion. 

(b) Each fibre wjfQ) (t£:M) is of the form HtX {t}, where Ht is a 
Lie subgroup of G. 

(c) Let 3 C X M 3 C = { ( 0 , b)E^X3C\irM(a) = wM(b)} and let m : X 
XiwX—>5C and s:3C--»3C be defined by m((xt t), (y, t)) — (xy, t) and 
s(x, t) = (x"1, t). Then m and s are analytic maps. 

I t follows from the definition that the function /—niim Ht is con­
stant on each component of M. 

3. Sketch of the proof of Theorem A. Let F denote either R or C. 
Since the problem is local, we may assume that M is an open neighbor­
hood of 0 in Fr and that /0 = 0. We let W be a vector subspace of g 
which is complementary to I). If 7r:g—>g/fy is the canonical projection, 
then the restriction TW of T to W is a vector space isomorphism of W 
and g/f); we define a uT-module structure on W by transferring the K-
module structure on g/f) to W by means of ww Let rjlK—>GL(W) 
denote the corresponding representation. 

The following lemma is proved by a straightforward application of 
the implicit function theorem. 

LEMMA 3.1. There exists an open neighborhood U of HX{o} in 
HXM and an analytic mapyp: U*-*W such that the following conditions 
hold for all (x, t)ÇzU; 

(a) iK* ,0 )=0; 
(b) (exp^(x, t))x£Ht; 



94 R. W. RICHARDSON, JR. [January 

(c) the map (x, t)*-*((exp \J/(x} t)xy t) is an analytic diffeomorphism of 
U onto an open neighborhood of HX {0} in 5C. 

The function \[/ is called the normal displacement function of the 
family 3C. The germ of yp in a neighborhood of HX {o} is uniquely 
determined by the family 5C. 

For each xÇzK, the map \fsxUi-*\l/(x, t) is an analytic map of an open 
neighborhood Ux of 0 in M into W. Thus we may expand ypx in a 
convergent power series about 0, 

00 

where, for each m, /H->Pm(x, t) is the restriction to Ux of a homo­
geneous polynomial map of degree m of Fr into W; denote this 
homogeneous polynomial map by Qm(x). If (Pm denotes the vector 
space of all homogeneous polynomial maps of Fr into Wt then Qm'*K 
—»(PW is an analytic map. Let 5 denote the smallest integer j such 
that Qj T^O. Q8 is called the first nonvanishing infinitesimal displace­
ment along K of the analytic family 3C. 

We define a i£-module structure on (PTO as follows: If xÇ:K and 
QÇz<Pm, then x-Q=rj(x)oQ. I t follows easily from the hypothesis that 
Hl(Kt(?m) = 0. 

PROPOSITION 3.2. Q8 is a one cocycle ofK. 

Since H(Ky (P8) = 0 , it follows from Proposition 2.2 that there exists 
0*G(P« such that P8(x, t)=<j>8(t)—x-<l>9(t) for xGK and tE.Ux, Using 
this, it can be shown that if we replace the analytic family 3C by the 
family 

3C' = (exp 0,(O)#<(exp - <t>8(t))teM} 

then the first nonvanishing infinitesimal displacement along if of the 
analytic family 3C' is of degree è s + 1 . 

Continuing inductively, we can define an infinite family 
(<l>u)u~8, 8+1, . . . , where <t>u is a homogeneous polynomial map of F* 
into W of degree u, such that the following condition holds: let 
w ^ s , let 0M=$«+</>8+j+ • • • +<1>U and let 3CW denote the analytic 
family (exp <t>u(i))Ht(exp—<j>u(t))ieM\ then the first nonvanishing 
infinitesimal displacement of the family 5CM is of degree greater than u. 

Let <j> denote the formal power series map of M into W given by 
0 =<£,+<£,+]+ • • • . If 0 converges in a neighborhood of 0 and if 
/3(0 =exp 4>{t) then it is easy to see that /3 satisfies the conditions of 
Theorem A. At this point, we need to use a recent theorem of M. 
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Artin [ l ] . Very roughly, Artin's theorem says that if a finite number 
of analytic equations admit a formal power series solution, then they 
admit a convergent power series solution. With some work, we can 
show that Artin's theorem implies that the formal power series $ 
above can be chosen to be convergent, which proves Theorem A. 

4. Applications to analytic transformation groups. Let the Lie 
group G act as an anlytic transformation group on the analytic mani­
fold M. If t&M, then the subgroup G< = {gEG\g-t = t} is called the 
isotropy group of G a t /; the identity component G? is the connected 
isotropy group at L 

PROPOSITION 4.1. Let G act on M as above and assume that all orbits 
of G on M have the same dimension. Then the family of connected 
isotropy groups (G^)teM is an analytic family of Lie subgroups of G. 

Thus we see that Theorem A applies to the situation above. 
A Lie group G is reductive if the component group G/G° is finite, 

if G admits a faithful finite-dimensional analytic representation 
and if every finite-dimensional analytic representation of G is 
completely reducible. If G is reductive and if p:G—>GL(F) is an 
analytic representation of G, then it is easy to see that Hl(G, V) = 0. 

Now let G and M be as in Proposition 4.1, let t £ M and let K be 
a reductive subgroup of G?. Then Theorem A implies that there 
exists a neighborhood U oltonM such that G°y contains a conjugate of 
K for every y £ U. 

5. Applications to algebraic transformation groups. Let G be a com­
plex linear algebraic group and let G act as an algebraic transforma­
tion group on the complex algebraic variety M. 

PROPOSITION S.l. There exists a nonempty, Zariski-open subset V of 
M such that the family (Gt)teu is an analytic family of Lie subgroups of 
G. 

If S is a complex linear algebraic group, then it is known (see [3]) 
that S admits a semidirect decomposition S = R-U, where U is the 
unipotent radical of S and R is a reductive algebraic subgroup of S; R 
is determined to within conjugacy by elements of U. Such a decom­
position is called a Levi decomposition of S. 

Now let (G, M) be an algebraic transformation space as above and, 
for every tGM, let Gt — Rt- Ut be a Levi decomposition of G*. Then 
the following theorem is a consequence of Theorem A and Prop­
osition 5.1. 
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THEOREM B. There exists a finite family X\y • • • , Xn of Zariski-
locally closed subsets of M such that the following conditions hold: 

(a) M-V^X,-. 
(b) For each j , Xj is a Zariski-open subset of M— (U^Zî Xi). 
(c) If x, yÇ.Xj, then Rx and Rv are conjugate. 
(d) For each j , the family ( Ut) texj is an analytic family of Lie sub-

groups of G. 
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