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1. Introduction. Throughout this paper, unless explicitly stated 
otherwise, all manifolds will be closed, connected, oriented, and of 
class C00. We denote by X some arbitrary closed subset of the w-man-
ifold Mn, XT^M". When X is empty, we shall suppress it from the 
notation. The set of orientation-preserving self-diffeomorphisms of 
Mn that fix each point of X can be made into a locally-path-con­
nected, metrizable, topological group Diff(Mn, X) by endowing it 
with the usual C00 topology and the operation of map-composition 
[6], [8]. Let Diff0(Mn, X) be the identity component of Diff(ikfM, X). 
For general Mn, the only global homotopy-theoretic fact known about 
Diff0(Afn, X) is that it has the homotopy type of a countable CW 
complex [8], 

Let Sn be the standard, oriented w-sphere. In [ l ] , the authors 
announced that Diff05n does not have the homotopy type of a finite 
CW complex when w ^ 7 . The techniques described in §3 of this an­
nouncement, together with [l ], allow us to extend this result to other 
manifolds. 

2. Statement of the main results and remarks. Our main result is 
the following: 

2.1. THEOREM. If Mn is a spin manifold with trivial rational 
Pontrjagin classes, then Diff0(Afn, X) does not have the homotopy type 
of a finite CW complex when either (a) n = 8k — 4, k^6, or (b) n = &k 
and k is admissible. 

An admissible natural number fe is a natural number à 42 for which 
the open interval (f (2fe + l ) , |(2& + 1)) contains a t least one prime. 
I t follows from the Prime Number Theorem that there are a t most 
finitely many inadmissible natural numbers, but the precise value of 
the largest such number is not known. See Remark 2.5 below. 

2.2. REMARK. I t is clear that 7r-manifolds of the appropriate di­
mensions satisfy the hypotheses of 2.1. Note that this includes ho­
motopy spheres, homotopy tori, real Stiefel manifolds, compact Lie 
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groups, and nilmanifolds. 
2.3. REMARK. J. Eells has conjectured that the standard w-torus 

Tn is a deformation retract of Diff0rw. This is true when w = 2, [7]. 
The above theorem, however, shows that it is false, in general. More­
over, application of results of this announcement, together with those 
of [ l ] , implies that the conjecture is false for all n^25. In a subse­
quent paper, whose techniques differ substantially from those de­
scribed here, the authors improve this to n^5 (cf. Remark 3.2 (c)). 

2.4. REMARK. Every closed, oriented surface M2 admits a spin 
structure and has trivial Pontrjagin classes. However, results of 
Smale [9] and Earle and Eells [7] imply that Diff0M2 has finite type. 

2.5. REMARK. Our proof of Theorem 2.1 combines the detection of 
nonzero 7rt(Diff0M

n) (see 3.5 below) with a theorem of W. Browder 
[3] which implies that an arc-connected ü-space Y of finite type 
satisfies 7r2(F)=0. Our method for detecting nonzero 7Ti(Diff0M

n), 
here, ultimately involves obtaining some crude lower bound for the 
order of a certain finite abelian group (see 3.9 below, and [l, Proposi­
tion 3.4]). This, in turn, involves certain elementary number-the­
oretic considerations which motivate our definition of admissible 
natural number, above. 

2.6. COROLLARY. Let Mn be a riemannian n-manifold with constant 
sectional curvature. If Mn admits a spin structure and either (a) 
n = &k — 4, fee6, or (b) n = &k, k admissible, then Diff0(lfn, X) does 
not have finite type. 

The following proposition shows that 2.6 is nonvacuous. 

2.7. PROPOSITION, (a) If Mn is a riemannian manifold of constant 
negative curvature, then there exists a finite riemannian covering 
Mn—>Mn with Mn a spin manifold, 

(b) Suppose that G is a group of odd order q>l and is generated by 
r elements. Let n be any integer ^ 3 such that w —1=0 (mod q) and 
(w — l ) /g i^ r — 1. Then, there exists a flat riemannian n-manifold having 
G as a linear holonomy group and admitting a spin structure. 

We are indebted to Professor A. Borel for a proof of (a), above. 
Par t (b) is an easy addendum to a theorem of Auslander and Kurani-
shi [2]. Note that the only even-dimensional (oriented!) manifolds 
of constant positive curvature are the standard spheres. 

3. Detecting nonzero 7r»(Diff0M
n). 

3.1. The groups 7i\(£)tff; Mn, X), 
Let R* denote Euclidean i-space. A ©iff map on MnXR* rel X is 

an orientation-preserving, C00 diffeomorphism f:MnXRi-J>MnXRi 
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such that supp ƒ ( = closure{(ƒ>, y) G Mn X R*\ f(py y) ^ (ƒ>, y)}) 
is compact and does not meet XXR*. A ^{^-concordance on 
MnXR* rel X is an orientation-preserving C00 diffeomorphism 
F:MnXJR*X[0, l ] - + M n X £ ' X [ 0 , l ] such that : 

(i) supp F is compact and does not meet I X R * X [ 0 , l ] ; 
(ii) for some €>0 , F has the form F(p, y9 t)~(Fa(p, y), t), if 

| * - a | ge , a = 0, 1. 
^{^concordance re/ X between ©tff-maps on MnXRi rel X is now 

defined in the obvious way and is easily seen to be an equivalence 
relation. The set of equivalence classes becomes a group under 
composition of maps, abelian when i ^ l , and we denote it by 
xt(S)tff; M\ X). 

3.2. REMARKS, (a) Note that every $)iff-map on MnXRi rel X is 
required to fix each point of some neighborhood of XXR\ the neigh­
borhood depending on the map. Let 

(1) Diff(Jf », N(X)) C Diff(If », X) 

be the subgroup consisting of all diffeomorphisms that fix some neigh­
borhood of Xy the neighborhood depending on the diffeomorphism. 
Clearly there is a forgetful homomorphism 

(2) T«(Diff(lf », N(X))) - * TTiCDiff ; if», X). 

Now, using results of Cerf [ó], we can show that the inclusion (1) is a 
homotopy equivalence when X is a (possibly empty) compact, 
codimension-zero, submanifold-with-boundary. By means of this 
equivalence, therefore, we may replace (2) by the "forgetful" homo­
morphism 

*:*-«(Diff(If», X)) ->T<(5Dlff; If», X). 

(b) Let Z>+ = { x G 5 w | x i ^ 0 } . Recall that rn +*+ 1 is the Kervaire-
Milnor group and that rn+*+1 is the Gromoll subgroup described in 
[l ]. We can construct an isomorphism 7r»(S)iff ; 5 n , D+) « r n + t + 1 under 
which *0r<(Diff(S», D\))) is taken onto r # i ' + 1 . 

(c) Analogues of 7rt(S)iff ; Mn, X) can be defined in other categories. 
The authors use these analogues to develop other methods for detect­
ing nonzero Xi(Diff0Afn). 

3.3. PROPOSITION. There exist homomorphisms E* and 8* making the 
following diagram commute: 

F 
Ti(D]S(Sn, Z>+)) —5x<(Diff Jf«) 

$ J, I * 
*«(©iff; 5», z£) -^„(fctff; Jf«) 
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The definitions of E* and 8* are similar. We define 8*. Choose orien­
tation-preserving C°°-imbeddings f:Dn—>5W and g:Dn—>Mn, where Dn 

is the unit ball in Rn, such that f(%Dn) = D1. Given any £)iff-map d 
on SnXR* rel D\, then 

(^ X id|*)tf-i X id*,)rf(/ X i d ^ C r 1 X id*) 

extends uniquely to a £)tff-map J o n ikfnX-R*rel (MnAnterior g(^Dn)). 
We may consider J to be a £)iff-map on MnXR\ The association 
d—>d defines 8*. I t is easy to show that E* and 8* do not depend on 
the choice of ƒ or g. 

3.4. -4 pasting construction. Let 9Tln+*+1 be the set of C00, oriented-
diffeomorphism-types of oriented, C00, (w+i+1)-manifolds. Let 
'q:Ri-^Si be a fixed, orientation-preserving diffeomorphism onto 5* 
minus a point, and let ƒ be a 2)tff-map on AfnXi?*. Define/ to be the 
compactification of (id MnXt])f (id MnXrj~l)t and form the C00 oriented 
(n+i + 1)-manifold PF(/) =ilfwXD t+1W?MwXZ> t+1 by the standard 
pasting process. The association f—*W(J) well defines a function 
«•«(©iff; Af»)A9TC»+«-1. 

Now recall that, by Remark 3.2 (b), above, each element 
<££7r»(£)tff; «Sn, 22+) determines an oriented, homotopy (n+i+1)-
sphere, unique up to orientation-preserving diffeomorphism, which 
we denote by 2(0) . Let # denote the operation of connected sum. 

3.5. PROPOSITION. For every 0G7Ti(2)tff; Sn, D\), 

P o 8*(0) = [(Mn X S*1) # 2(0)] G 9W+""1. 

Recall that the inertia subgroup I(MnXSi+1)QTn+i+1 consists of 
all classes represented by oriented homotopy spheres 2 for which 
(MnXSi+l)#2, is orientation-preserving diffeomorphic to MnXSi+1. 

3.6. COROLLARY. We identify 7r*(£)tff; Sn, D\) and Tn+i+l by the 
isomorphism mentioned in Remark 3.2 (b), above. Then, 

kernel S* C I(Mn X Si+l). 

Combining 3.2 (b) and 3.3 with 3.6, we obtain the following 

3.7. NONTRIVIALITY CRITERION. The homomorphism 

T<(Diff(S», 2?+)) -^>Ti(Di& Mn) 

is nontrivial provided that r ?# + 1 £I (M w XS* ' + 1 ) . 

To apply 3.7, we prove the following: 

3.8. THEOREM. Let Mn be a spin manifold with vanishing rational 
Pontrjagin classes. Then, 
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/ ( M » X 5 i + l ) n j P n + i + 2 = 0, i /n + i + l s 3 ( 8 ) , i è 1, 
= Z2 or 0, ifn + i + 1 = 7 ( 8 ) , i ^ l . 

Here, &Pjb+i£r* consists of all classes whose representatives bound 
7T-manifolds. 

This theorem and its proof are closely related to the work of W. 
Browder [4], with the important difference that his results require 
H1(MnXSi+1) =0 , whereas ours do not. For the proof, given a 2 
representing a class in J ( M w X 5 i + 1 ) n i ? n + t + 2 , we construct a mani­
fold PT such that : 

(i) W is a, spin manifold with trivial decomposable Pontrj agin 
numbers; 

(ii) d W is orientation-preserving diffeomorphic to 2 ; 
(iii) Index W = 0. 
I t follows that the Brumfiel invariant X(S) is zero, so that, by re­

sults of Brumfiel [S], S or 2#2 is standard, as stated above. 
3.9. PROOF OF THEOREM 2.1. Combining 3.7 and 3.8, we can detect 

nonzero a\-(Diff Mn) whenever either r f f î ^ n & P n + i ^ O , n+i + 1 = 3 
(8), i^ 1, or Ti+ï+lr\bPn+i+2 has more than two elements, n+i + 1^7 
(8) , i ;> l . Se t i = 2 and apply Propositions 3.3 and 3.4 of [ l ] . I t follows 
(after some complicated but elementary number theory), that 
7r2(Diff Mn) 5*0 when n satisfies 2.1 (a) or (b). I t is not hard to show 
that E* factors through 7r»(Diff(Afw, X)), so that the same nontrivial-
ity result applies to 7r2(Diff(Mn, X)). 

Theorem 2.1 now follows by applying the theorem of Browder de­
scribed in Remark 2.5. Q.E.D. 
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