THE NONFINITE TYPE OF SOME $Diff_0M^n$

BY P. L. ANTONELLI, D. BURGHELEA, P. J. KAHN¹

Communicated by Louis Auslander, May 1, 1970

- 1. Introduction. Throughout this paper, unless explicitly stated otherwise, all manifolds will be closed, connected, oriented, and of class C^{∞} . We denote by X some arbitrary closed subset of the n-manifold M^n , $X \neq M^n$. When X is empty, we shall suppress it from the notation. The set of orientation-preserving self-diffeomorphisms of M^n that fix each point of X can be made into a locally-path-connected, metrizable, topological group $\mathrm{Diff}(M^n, X)$ by endowing it with the usual C^{∞} topology and the operation of map-composition [6], [8]. Let $\mathrm{Diff}_0(M^n, X)$ be the identity component of $\mathrm{Diff}(M^n, X)$. For general M^n , the only global homotopy-theoretic fact known about $\mathrm{Diff}_0(M^n, X)$ is that it has the homotopy type of a countable CW complex [8].
- Let S^n be the standard, oriented *n*-sphere. In [1], the authors announced that $Diff_0S^n$ does not have the homotopy type of a finite CW complex when $n \ge 7$. The techniques described in §3 of this announcement, together with [1], allow us to extend this result to other manifolds.
- 2. Statement of the main results and remarks. Our main result is the following:
- 2.1. THEOREM. If M^n is a spin manifold with trivial rational Pontrjagin classes, then $\mathrm{Diff}_0(M^n, X)$ does not have the homotopy type of a finite CW complex when either (a) n=8k-4, $k\geq 6$, or (b) n=8k and k is admissible.

An admissible natural number k is a natural number ≥ 42 for which the open interval $(\frac{1}{3}(2k+1), \frac{1}{2}(2k+1))$ contains at least one prime. It follows from the Prime Number Theorem that there are at most finitely many *in*admissible natural numbers, but the precise value of the largest such number is not known. See Remark 2.5 below.

2.2. Remark. It is clear that π -manifolds of the appropriate dimensions satisfy the hypotheses of 2.1. Note that this includes homotopy spheres, homotopy tori, real Stiefel manifolds, compact Lie

AMS 1969 subject classifications. Primary 5720, 5755; Secondary 5372.

Key words and phrases. Homotopy type of CW-complex, π -manifold, space of diffeomorphisms of a manifold, flat manifold, manifolds of constant negative curvature, rational Pontrjagin classes, spin structure.

¹ The first two authors were supported in part by National Science Foundation grant GP-7952X1 and the third was supported by a National Science Foundation Postdoctoral Fellowship.

groups, and nilmanifolds.

- 2.3. REMARK. J. Eells has conjectured that the standard n-torus T^n is a deformation retract of Diff_0T^n . This is true when n=2, [7]. The above theorem, however, shows that it is false, in general. Moreover, application of results of this announcement, together with those of [1], implies that the conjecture is false for all $n \ge 25$. In a subsequent paper, whose techniques differ substantially from those described here, the authors improve this to $n \ge 5$ (cf. Remark 3.2 (c)).
- 2.4. Remark. Every closed, oriented surface M^2 admits a spin structure and has trivial Pontrjagin classes. However, results of Smale [9] and Earle and Eells [7] imply that Diff₀ M^2 has finite type.
- 2.5. Remark. Our proof of Theorem 2.1 combines the detection of nonzero $\pi_i(\mathrm{Diff_0}M^n)$ (see 3.5 below) with a theorem of W. Browder [3] which implies that an arc-connected H-space Y of finite type satisfies $\pi_2(Y) = 0$. Our method for detecting nonzero $\pi_i(\mathrm{Diff_0}M^n)$, here, ultimately involves obtaining some crude lower bound for the order of a certain finite abelian group (see 3.9 below, and [1, Proposition 3.4]). This, in turn, involves certain elementary number-theoretic considerations which motivate our definition of admissible natural number, above.
- 2.6. COROLLARY. Let M^n be a riemannian n-manifold with constant sectional curvature. If M^n admits a spin structure and either (a) n=8k-4, $k \ge 6$, or (b) n=8k, k admissible, then $\mathrm{Diff}_0(M^n, X)$ does not have finite type.

The following proposition shows that 2.6 is nonvacuous.

- 2.7. PROPOSITION. (a) If M^n is a riemannian manifold of constant negative curvature, then there exists a finite riemannian covering $\tilde{M}^n \to M^n$ with \tilde{M}^n a spin manifold.
- (b) Suppose that G is a group of odd order q > 1 and is generated by r elements. Let n be any integer ≥ 3 such that $n-1 \equiv 0 \pmod{q}$ and $(n-1)/q \geq r-1$. Then, there exists a flat riemannian n-manifold having G as a linear holonomy group and admitting a spin structure.

We are indebted to Professor A. Borel for a proof of (a), above. Part (b) is an easy addendum to a theorem of Auslander and Kuranishi [2]. Note that the only even-dimensional (oriented!) manifolds of constant positive curvature are the standard spheres.

- 3. Detecting nonzero $\pi_i(\text{Diff}_0M^n)$.
- 3.1. The groups $\pi_i(\mathfrak{Diff}; M^n, X)$.

Let R^i denote Euclidean *i*-space. A Diff map on $M^n \times R^i$ rel X is an orientation-preserving, C^{∞} diffeomorphism $f: M^n \times R^i \to M^n \times R^i$

such that supp f (=closure $\{(p, y) \in M^n \times R^i | f(p, y) \neq (p, y)\}$) is compact and does not meet $X \times R^i$. A Diff-concordance on $M^n \times R^i$ rel X is an orientation-preserving C^{∞} diffeomorphism $F: M^n \times R^i \times [0, 1] \rightarrow M^n \times R^i \times [0, 1]$ such that:

- (i) supp F is compact and does not meet $X \times R^i \times [0, 1]$;
- (ii) for some $\epsilon > 0$, F has the form $F(p, y, t) = (F_{\alpha}(p, y), t)$, if $|t-\alpha| \le \epsilon$, $\alpha = 0$, 1.

Diff-concordance rel X between Diff-maps on $M^n \times R^i$ rel X is now defined in the obvious way and is easily seen to be an equivalence relation. The set of equivalence classes becomes a group under composition of maps, abelian when $i \ge 1$, and we denote it by $\pi_i(\text{Diff}; M^n, X)$.

3.2. Remarks. (a) Note that every \mathfrak{Diff} -map on $M^n \times R^i$ rel X is required to fix each point of some neighborhood of $X \times R^i$, the neighborhood depending on the map. Let

(1)
$$\operatorname{Diff}(M^n, N(X)) \subseteq \operatorname{Diff}(M^n, X)$$

be the subgroup consisting of all diffeomorphisms that fix some neighborhood of X, the neighborhood depending on the diffeomorphism. Clearly there is a forgetful homomorphism

(2)
$$\pi_i(\operatorname{Diff}(M^n, N(X))) \to \pi_i(\mathfrak{Diff}; M^n, X).$$

Now, using results of Cerf [6], we can show that the inclusion (1) is a homotopy equivalence when X is a (possibly empty) compact, codimension-zero, submanifold-with-boundary. By means of this equivalence, therefore, we may replace (2) by the "forgetful" homomorphism

$$\Phi: \pi_i(\mathrm{Diff}(M^n, X)) \to \pi_i(\mathfrak{Diff}; M^n, X).$$

- (b) Let $D_+^n = \{x \in S^n | x_1 \ge 0\}$. Recall that Γ^{n+i+1} is the Kervaire-Milnor group and that Γ^{n+i+1}_{i+1} is the Gromoll subgroup described in [1]. We can construct an isomorphism $\pi_i(\mathfrak{Diff}; S^n, D_+^n) \approx \Gamma^{n+i+1}$ under which $\Phi(\pi_i(\mathrm{Diff}(S^n, D_+^n)))$ is taken onto Γ^{n+i+1}_{i+1} .
- (c) Analogues of $\pi_i(\mathfrak{Diff}; M^n, X)$ can be defined in other categories. The authors use these analogues to develop other methods for detecting nonzero $\pi_i(\mathrm{Diff}_0M^n)$.
- 3.3. Proposition. There exist homomorphisms E_* and E_* making the following diagram commute:

$$\pi_{i}(\operatorname{Diff}(S^{n},\ D_{+}^{n})) \xrightarrow{E_{*}} \pi_{i}(\operatorname{Diff}\ M^{n})$$

$$\Phi \downarrow \qquad \qquad \downarrow \Phi$$

$$\pi_{i}(\mathfrak{Diff};\ S^{n},\ D_{+}^{n}) \xrightarrow{\mathfrak{E}_{*}} \pi_{i}(\mathfrak{Diff};\ M^{n})$$

The definitions of E_* and \mathcal{E}_* are similar. We define \mathcal{E}_* . Choose orientation-preserving C^{∞} -imbeddings $f: D^n \to S^n$ and $g: D^n \to M^n$, where D^n is the unit ball in \mathbb{R}^n , such that $f(\frac{1}{2}D^n) = D^n$. Given any Diff-map d on $S^n \times \mathbb{R}^i$ rel D^n_+ , then

$$(g \times \mathrm{id}_{R^i})(f^{-1} \times \mathrm{id}_{R^i})d(f \times \mathrm{id}_{R^i})(g^{-1} \times \mathrm{id}_{R^i})$$

extends uniquely to a \mathfrak{D} iff-map \bar{d} on $M^n \times R^i$ rel $(M^n$ -interior $g(\frac{1}{2}D^n)$). We may consider \bar{d} to be a \mathfrak{D} iff-map on $M^n \times R^i$. The association $d \rightarrow \bar{d}$ defines \mathcal{E}_* . It is easy to show that E_* and \mathcal{E}_* do not depend on the choice of f or g.

3.4. A pasting construction. Let \mathfrak{M}^{n+i+1} be the set of C^{∞} , oriented-diffeomorphism-types of oriented, C^{∞} , (n+i+1)-manifolds. Let $\eta: R^i \to S^i$ be a fixed, orientation-preserving diffeomorphism onto S^i minus a point, and let f be a Diff-map on $M^n \times R^i$. Define \overline{f} to be the compactification of $(\mathrm{id}_{M^n} \times \eta) f(\mathrm{id}_{M^n} \times \eta^{-1})$, and form the C^{∞} oriented (n+i+1)-manifold $W(f) = M^n \times D^{i+1} \cup_{\overline{f}} M^n \times D^{i+1}$ by the standard pasting process. The association $f \to W(f)$ well defines a function $\pi_i(\mathfrak{Diff}; M^n) \xrightarrow{P} \mathfrak{M}^{n+i+1}$.

Now recall that, by Remark 3.2 (b), above, each element $\phi \in \pi_i(\mathfrak{Diff}; S^n, D_+^n)$ determines an oriented, homotopy (n+i+1)-sphere, unique up to orientation-preserving diffeomorphism, which we denote by $\Sigma(\phi)$. Let # denote the operation of connected sum.

3.5. Proposition. For every $\phi \in \pi_i(\mathfrak{Diff}; S^n, D_+^n)$,

$$P \circ \mathcal{E}_*(\phi) = [(M^n \times S^{i+1}) \# \Sigma(\phi)] \in \mathfrak{M}^{n+i+1}.$$

Recall that the *inertia subgroup* $I(M^n \times S^{i+1}) \subseteq \Gamma^{n+i+1}$ consists of all classes represented by oriented homotopy spheres Σ for which $(M^n \times S^{i+1}) \# \Sigma$ is orientation-preserving diffeomorphic to $M^n \times S^{i+1}$.

3.6. COROLLARY. We identify $\pi_i(\mathfrak{Diff}; S^n, D^n_+)$ and Γ^{n+i+1} by the isomorphism mentioned in Remark 3.2 (b), above. Then,

kernel
$$\mathcal{E}_* \subseteq I(M^n \times S^{i+1})$$
.

Combining 3.2 (b) and 3.3 with 3.6, we obtain the following

3.7. Nontriviality Criterion. The homomorphism

$$\pi_i(\operatorname{Diff}(S^n,\ D^n_+)) \xrightarrow{E_*} \pi_i(\operatorname{Diff}\ M^n)$$

is nontrivial provided that $\Gamma_{i+1}^{n+i+1} \subseteq I(M^n \times S^{i+1})$.

To apply 3.7, we prove the following:

3.8. THEOREM. Let M^n be a spin manifold with vanishing rational Pontrjagin classes. Then,

$$I(M^n \times S^{i+1}) \cap bP_{n+i+2} = 0,$$
 if $n+i+1 \equiv 3$ (8), $i \ge 1$,
= \mathbb{Z}_2 or 0, if $n+i+1 \equiv 7$ (8), $i \ge 1$.

Here, $bP_{k+1} \subseteq \Gamma^k$ consists of all classes whose representatives bound π -manifolds.

This theorem and its proof are closely related to the work of W. Browder [4], with the important difference that his results require $H^1(M^n \times S^{i+1}) = 0$, whereas ours do not. For the proof, given a Σ representing a class in $I(M^n \times S^{i+1}) \cap bP_{n+i+2}$, we construct a manifold W such that:

- (i) W is a spin manifold with trivial decomposable Pontrjagin numbers;
 - (ii) ∂W is orientation-preserving diffeomorphic to Σ ;
 - (iii) Index W = 0.

It follows that the Brumfiel invariant $\lambda(\Sigma)$ is zero, so that, by results of Brumfiel [5], Σ or $\Sigma \# \Sigma$ is standard, as stated above.

3.9. PROOF OF THEOREM 2.1. Combining 3.7 and 3.8, we can detect nonzero $\pi_i(\text{Diff }M^n)$ whenever either $\Gamma_{i+1}^{n+i+1} \cap bP_{n+i+2} \neq 0$, $n+i+1\equiv 3$ (8), $i\geq 1$, or $\Gamma_{i+1}^{n+i+1} \cap bP_{n+i+2}$ has more than two elements, $n+i+1\equiv 7$ (8), $i\geq 1$. Set i=2 and apply Propositions 3.3 and 3.4 of [1]. It follows (after some complicated but elementary number theory), that $\pi_2(\text{Diff }M^n)\neq 0$ when n satisfies 2.1 (a) or (b). It is not hard to show that E_* factors through $\pi_i(\text{Diff}(M^n,X))$, so that the same nontriviality result applies to $\pi_2(\text{Diff}(M^n,X))$.

Theorem 2.1 now follows by applying the theorem of Browder described in Remark 2.5. Q.E.D.

REFERENCES

- 1. P. Antonelli, D. Burghelea and P. J. Kahn, Gromoll groups, Diff Sⁿ and bilinear constructions of exotic spheres, Bull. Amer. Math. Soc. 76 (1970), 772-779.
- 2. L. Auslander and J. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. of Math. (2) 65 (1957), 411-415. MR 19, 168.
- 3. W. Browder, Torsion in H-spaces, Ann. of Math (2) 74 (1961), 24-51. MR 23 #A2201.
- 4. ——, On the action of $\Theta^n(\partial \pi)$, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) Princeton Univ. Press, Princeton, N. J., 1965, pp. 23–36. MR 31 #4041.
- 5. G. Brumfiel, On the homotopy groups of BPL and PL/O, Ann. of Math. (2) $88\ (1968),\,291{-}311.$ MR $38\ \#2775.$
- 6. J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 80 (1961), 227-380. MR 25 #3543.
- 7. C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19-43.
- 8. R. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16. MR 32 #6455.
- 9. S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626. MR 22 #3004.

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540