ACYCLICITY IN THREE-MANIFOLDS
BY D. R. MCMILLAN, JR.!

ABSTRACT. An acyclic compactum in an orientable, open 3-man-
ifold has arbitrarily close, polyhedral neighborhoods whose com-
ponents are compact 3-manifolds with a special structure. Fre-
quently, these 3-manifolds have free fundamental groups. These
observations and some results from combinatorial group theory
are exploited to deduce facts about the homomorphism of fun-
damental groups induced by an acyclic mapping. The techniques
are applied to relate local homotopy properties of quotient spaces
of acyclic upper semicontinuous decompositions, to “UV” (or
“shape”) properties of the elements in the decomposition. It is
shown that a “0O-dimensional” monotone decomposition of Eu-
clidean k-space is acyclic if the quotient space is an open k-man-
ifold. (For k=3, such a decomposition is shown to be cellular.)
Some conditions are given under which acyclic decompositions are
cellular,

1. Introduction. Let G be an upper semicontinuous decomposition
of Euclidean 3-space E?, into compact, connected sets such that for
some prime p, each g&G is strongly 1-acyclic over Z, (the integers
modulo p). Our purpose is to show that some useful information of a
homotopy-theoretic nature about the decomposition space E?*/G and
the projection mapping Pg, can be deduced from an examination of
the nondegenerate elements of G (whose union is denoted Hg). For
example, we prove that a necessary condition that E3}/G should be
locally simply connected at Pg(g), is that g should have property
1-UV. (These and other terms are defined later.)

In particular, if X is a continuum in E?® which is strongly 1-acyclic
over Z,, then E? “modulo” X is locally simply connected if and only
if X has property 1-UV. This agrees with R. H. Bing's announcement
[7] that E?® modulo a solenoid is not simply connected and hence not
locally simply connected. In light of the 1-dimensional continuum of
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J. H. Case and R. E. Chamberlin in §5 of [10], our result also elimi-
nates the possibility that the more stringent hypothesis on X of strong
1-acyclicity over Z (the integers) would yield a different answer. (The
example of [10] is acyclic over every coefficient group, and hence we
have answered the questions raised by K. Borsuk in [8, Problem 3.3,
p. 214], and by D. M. Hyman in [14, p. 67].) In the case of the
specific example M of [10], S. Armentrout has shown independently
that E® modulo M is not simply connected.

Our other main result concerns the case in which G is a compact
decomposition of E3, each of whose elements is strongly acyclic. We
prove that for each open, connected set UCZE?/G, the projection
mapping from Pg'(U) onto U induces a monomorphism on funda-
mental groups. When this fact is combined with the result above, we
obtain several necessary conditions for the existence of a homeomor-
phism h:E3/G—E?/F such that h(P¢Hg) = PrHp (where Fis also a
compact decomposition of E?). Namely, if an element g&G “corre-
sponds” under & to an element fE F, then: f has property UV= if and
only if g has property UV=; and f is cellular if and only if g is cellular.
Further, it has been conjectured that £ modulo a compact set X with
property UV* yields E* when multiplied by E!. It follows from our
results that “property UV*” 45 necessary for this conclusion, and that
it suffices to prove the conjecture when X is a treelike continuum.

A knowledge of the main results and terminology of [26] will be
helpful. We now mention several conventions and definitions for later
use. The symbol Z, (p always denotes 0 or a prime) is to be read
consistently in a given discussion, with Zo=Z the infinite cyclic
group. If # is an integer, # =1, then a compact set X C M is strongly
n-acyclic over Z, (or “has property n-uv(Z,)”) if each open set UC M
containing X contains an open set V such that X CV and such that
each n-cycle in V is homologous to zero in U (singular homology, Z,
coefficients). For example, the usual dyadic solenoid is strongly
1-acyclic over Z;, but not over Z, even though its integral Cech
homology is zero. If #=0 and we replace, at each occurrence in our
definition, “n-cycle” by “singular #n-sphere” and “homologous to
zero” by “homotopic to a constant,” then we obtain the definition of
property n-UV. The statement “X C M has property UV*” means that
X has property 2-UV for 0 =7=<#n. Thus, “strongly n-acyclic” is the
homology analogue of property #-UV (see [6] and [26]). A compact
set X C M is strongly acyclic over Z, (or “has property uve(Z,)”) if it is
connected and is strongly n-acyclic over Z, for each n=1 (cf. the
remarks in [26, §3]). The corresponding homotopy property is called
property UV e, Clearly, a compact subset X of a manifold has
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property 0-UV if and only if X is connected. We let E*, S*, and A" de-
note, respectively, Euclidean #-space, the n-sphere, and the n-
simplex. T* is the i-skeleton of a given triangulation T. As usual,
manifolds are connected.

Many of our results are more general than stated above, and apply
to 3-manifolds other than E3. In general, we have stated our main
results in terms of compact, monotone mappings, and our corollaries
in the language of decompositions. See [6, §6] for the connection.
Many different authors have obtained results on UV properties and
related topics (see [2], [3], [6], [9], [14], [15], [16], [18], [19], [27],
and [30]), and we have made no attempt to cite all the possible refer-
ences for a given fact.

2. Some geometric-algebraic background. Recall that a mapping
is said to be compact if the pre-image of each compact set is compact.
A mapping is called monotone if each point-inverse is compact and
connected. A mapping is a UV* mapping if each of its point-inverses
has property UV~,

In the context of the next theorem, the statement that a singular
n-sphere in X represents an element of N means that the set of elements
in m,(X) generated by the singular n-sphere under the action of
m1(X) (see [31, p. 384]), is contained in N. Since N is assumed to be
invariant under the action of m1(X), this requirement is unambiguous.

Note that if =1, then we are just requiring that N be normal in
7l'1(X).

THEOREM 1. Suppose that X and Y are pathwise-connected metric
spaces, that P is a compact Ut mapping from X onto Y (n=1), and
that N 1s a subgroup of G=m.(X, xo), with N invariant under the action
of mi(X). Suppose further that the following holds for each yE Y': there
is an open set W,CX with compact closure, such that P~ (y) CW, and
such that each singular n-sphere in W, when constdered in X, represents
an element of N. Then the kernel of the homomorphism

Py:ma(X, %) = (Y, P(%0))
s contained in N.

Proor. Let L=0A"*'. Suppose that g:A***—Y and f:L—X are
maps with g| L =Pf. We wish to show that f represents an element of
N. Let e be a positive number so small that if 4 is a subset of Y of
diameter less than € and if ANg(A™+1) £ &, then P~1(4) is contained
in some W,. Let T be a subdivision of A**! such that for each 7-simplex
acT, :=n+1, g(oc¥) has diameter less than ¢/3. Denote I™, the
n-skeleton of T, by K.
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According to [6, Lemma 3.2], there is an extension F of f sending
K into X such that D(g| K, PF)<e/3, where D denotes the metric on
Y. Clearly, for each o*t'& T, PF(do™t!) has diameter less than e.
Hence, P-1PF(do™*!) is contained in some W,. Thus, for each
o™ ET, F| o™ represents an element of N. It follows that F|dA™+
=f represents an element of N.

Following J. Stallings in [32], if Q is a subgroup of the group G and
p is zero or a prime, then we define G#Q to be the subgroup of G
generated by all elements

gug 'u~'v?, where g€ G, u, v € Q.

The (descending) central series of G corresponding to p is defined
inductively by putting Go=G, Gay1=G#Ga, and Gg=Nucs Go, if Bis a
limit ordinal. Note that for p =0, this definition gives the lower cen-
tral series of G, whose term G is the commutator subgroup of G. Each
Ge is fully invariant in G (see [21, p. 74]), hence normal. Stallings has
shown in [32, Theorem 6.3] that if G is a free group, then for the first
infinite ordinal w, G, = 1. If G is a finitely-generated abelian group and
p#0, then G, consists of all elements whose orders are finite and
relatively prime to .

Now suppose that XCM is a compact set which has property
UV™1 n=1, and is strongly n-acyclic over Z,. It follows that X
satisfies the usual “UV” statement with U and V connected and the
image H,(V; Z)—H,(U; Z) contained in the subgroup p-H,.(U; Z).
Hence, if =1, we find that the image 7,(V)—w,(U) is contained in
the term G, of the p-central series for G=m,(U). For n>1, we can
prove the same “UV” statement by the methods of [19, Theorem
4.2]. Hence:

CoROLLARY 1.1. Suppose M* is a k-manifold, possibly with boundary,
and that P is a compact, UV mapping (n=1) of M* onto a Hausdor[f
space Y. Suppose that for each yE Y, P~1(y) is contained in a compact
set AyC M*, such that A, is strongly n-acyclic over Z,. Then the kernel
of the homomorphism

P*:ﬂ'n(Mk, xo) - 7"7»( Y; P(xo))
is contained in the term G, of the central series of G=m,(M*, xo) corre-
sponding to p.

We remark that our corollary adds nothing new when p=0, n>1,
and each 4,=P-1(y). For, R. C. Lacher shows in [19] in this case,
that P is a UV” mapping and hence induces m,-isomorphisms. If p =0
and n=1, then a stronger result than claimed can actually be de-
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duced. Namely, that kernel P* is contained in each of the successive
derived subgroups of G (see [21, p. 293]).

In the proof of Theorem 1 for »=1, we can replace A? by an appro-
priate mapping cylinder of a map from dA? to a wedge of circles, and
obtain the following generalization. Details are left to the interested

reader (see [21, p. 74] for our notation and for a discussion of verbal
subgroups).

THEOREM 1’. Assume the hypotheses of Theorem 1 with n=1. Let
W.(Xy) be a set of words in the symbols X\ (u, N=1, 2, - - - ). Let
G=m(X, x0), H=m(Y, P(x0)), and a&EG. If Px(co) belongs to the
W ,-verbal subgroup H(W,, - - - ), then aEN-G(W,, - - - ). Hence, if
NCG(W,, -+ +), then P induces a monomorphism

G/GWy, « -+ )—>H/HW,, - - -).

REMARK. In the context of Corollary 1.1, one can obtain from
Theorem 1/, obvious “monomorphism” corollaries about the induced
mappings between the quotient groups of G=m1(M") and H=m(Y)
by the corresponding terms in their central series corresponding to .

We shall need later the following sharpened form of Theorem 2 of
[26]. The proof of Theorem 2 relies on the Finiteness Theorem of
W. Haken [12, p. 48]. However, it suffices for our purpose to know
his result in the case where all the incompressible surfaces being con-
sidered are closed (i.e., compact and without boundary). Moreover,
we need only a finite upper bound on the number of disjoint, incom-
pressible, polyhedral surfaces which can exist in the compact 3-mani-
fold M?® with no two of them being parallel. That is, Haken's specific
estimate of 61« does not matter to us.

Haken's argument simplifies considerably (and certain difficulties
do not arise) when M3 is irreducible and the surfaces are closed. The
general result (for collections of closed surfaces) follows from the
irreducible one and from the fact that M?® can be cut along a collection
of polyhedral 2-spheres, and 3-cells attached to the boundary of the
resulting 3-manifold, so as to obtain an irreducible 3-manifold (see
[12, p. 42]). This program is not hard to carry out, and is recorded in
[35]. T have learned that Harry Row has independently obtained a
proof along these lines.

THEOREM 2. Let X be a compact, proper subset of Int M3, where M?
is an orientable piecewise-linear 3-manifold. Let p denote O or a prime,
and suppose that X has the following property relative to M® and p: For
each open set UC M?® with X C U, there is an open set V, XCVCU,
such that under inclusion,
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H\(V — X;Z,) = H\(U; Zy,)

is gero. Then, X =02, H;, where H; is a compact polyhedron in M3,
each component of H; is an orientable 3-manifold with nonempty bound-
ary, H; .1 ClInt H;, and each component of H; has the following structure:
it 1s obtained from a compact 3-manifold Q® whose boundary consists
entirely of 2-spheres, by adding to dQ® a finite number of (solid) 1-
handles.

Proor. We emphasize that the manifold Q® is permitted to vary
with the choice of 7 and with the component of H; being considered.
The designation @ is only for convenience in later references. Our
special hypothesis on X is hereditary with respect to subsets of X
which are both open and closed in X. Hence, it suffices to show that
X has a neighborhood of the required type in 3.

The proof is the same as the proof of [26, Theorem 2], except for
the modifications which we indicate here. We retain the notation of
[26], with Z, replacing Z«. Note that we have had to assume orienta-
bility of M3, whereas in [26] the hypotheses guaranteed an orientable
neighborhood of X in M3. Also because of our weakened hypotheses,
we are able to assume, as in [26], neither that d M?® is connected nor
that M?® is separated by each polyhedral surface in M3. Thus, 2-
spheres in M? not only may fail to bound homology cells, they may
even fail to separate M3. As before, we may assume that M? is com-
pact, and the integer H is selected in the same manner. Again, we
consider nested, ordered H-tuples 2 of Z,'s but require that they
possess a characteristic property weaker than the one used in [26].
Namely, we insist only that each 1-cycle in Z; should “bound” in
Int Z..

The rest of the proof is essentially unchanged. That is, we detect
Zy in 2* such that dZ, consists entirely of 2-spheres. We make no
attempt to put Z, in a Z,-homology 3-cell H3, but instead let H2 (= (Q?)
be obtained by joining efficiently the components of Z,, by tubes, and
then taking a regular neighborhood of the result. The proof is com-
pleted as before by invoking [26, Theorem 1] to provide the required
neighborhood of X in M?3.

COROLLARY 2.1. Let X be a compact, proper subset of Int M3, where
M3 is a piecewise-linear 3-manifold and each component of X is strongly
1-acyclic over Z, (p=0 or a prime). If p>2, assume also that M? is
orientable. Then, X =02, H;, where H; is a compact polyhedron in M3,
each component of H; is an orientable 3-manifold with nonempty bound-
ary, H;(7:CInt H;, and each component of H; has the following structure:
it 1s obtained from a 3-manifold Q* wiih H\(Q®%; Z,) =0, by adding to
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90 a finite number of (solid, orientable) 1-handles, none of which joins
different components of dQ%. If, in addition, each component of X is
strongly acyclic over Z,, then each component of H; can be chosen to have
connected boundary. If each component of X also has property 2-UV,
then each component of H; can be chosen to be a homotopy cube-with-
handles.

Proor. We note the word of caution about @ given at the start of
the proof of Theorem 2. Again, it suffices to find a neighborhood of X
in M:? of the required type. There is a 3-dimensional, orientable sub-
manifold M3 of M?® with the inclusion Hy(Ms; Z,)—Hy(M?; Z,) zero,
so that (as is easily shown) each 2-sided polyhedral surface in Mg
separates M¢.

Clearly the hypotheses of Theorem 2 are met. Let Hy, Hy, - -+ + be
the polyhedra provided by Theorem 2, with H;ClInt M3 The
1-handles added to each dQ® (in the conclusion of Theorem 2) do not
join up different components of 9(Q?, because each (necessarily
2-sided) 2-sphere in M§ separates M3. To insure that each H1(Q%; Z,)
=0, select (and relabel) a subsequence of Hj, H,, + - -, with each
inclusion H;;—H; inducing the zero homomorphism on 1-dimen-
sional Z,-homology. The desired result then follows, since 0(® consists
entirely of 2-spheres and hence (from a Mayer-Vietoris sequence) the
inclusion (Q®*—H;, induces a monomorphism on 1-dimensional
Zy,-homology.

In case each component of X is strongly acyclic over Z,, we argue
that the above sequence can be chosen so that each polyhedral 2-
sphere in H;yy bounds a Z,-homology 3-cell in H;. This fact is then
used to replace H;yy by an Hj4,ClInt H;, where dH,, is connected.
Details are left to the reader. For the last assertion, see the proof of
Theorem 3 of [26].

REMARK 1. If NV%is a compact 3-manifold whose boundary contains
exactly n 2-spheres, #2 1, then we can remove (z—1) “tunnels” from
N3 s0 as to obtain a 3-manifold with the same fundamental group, but
having boundary which contains exactly one 2-sphere. Hence, the @3
of Theorem 2 and Corollary 2.1 can be expressed as Qf plus a finite
number of disjoint 2-handles, where dQj is a 2-sphere and m:(Q}) is
isomorphic to m1(Q®). Thus,

Hy(Qo; Zo) ~ Hi(Q'; Z).

REMARK 2. Some pleasing geometric observations result from
Corollary 2.1. Let X and M3 be as given there. Then, in order to show
that each component of X is strongly acyclic over Z,, it suffices to
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check the “UV” definition of strong 2-acyclicity with respect to 2-
cycles which can be represented by polyhedrally embedded 2-spheres
in V. Further, we need only show that such 2-cycles bound with Z,-
coefficients, even when proving that each component of X is strongly
acyclic over Z. Thus we can, for example, always replace “strongly
acyclic over Z, and has property 2-UV” by “strongly 1-acyclic over
Z, and has property 2-UV” when considering a compact, connected
set in an orientable, nonclosed 3-manifold. See Theorems 3 and 4 of
[26] and their corollaries as cases in point.

For future reference, we collect in the following lemma some useful
facts about strong acyclicity. The proofs are left to the reader. Part
(i) is an easy compactness argument. Part (ii) uses the definition
and symmetry of linking for two oriented “bounding” simple closed
curves in an oriented M3. The last two parts depend on Corollary 2.1
and its Remark 2. All parts assume it known that a compact, proper
subset of the interior of M? has arbitrarily close, compact, polyhedral
neighborhoods each of whose components is a compact 3-manifold
with nonempty boundary.

LeEMMA 1. Let X be a compact, proper subset of the interior of an
orientable, piecewise-linear 3-manifold M®. Let p denote 0 or a prime.
Then the following propositions kold.

(1) If n is a positive integer, G is an abelian group, and R is one of
the properties “n-UV?” or “strongly n-acyclic over G” then X has property
R if and only if each component of X has property R.

(ii) X s strongly 1-acyclic over Z, if and only if some open neighbor-
hood U of X in M3 has these properties: each polyhedral simple closed
curve in U (considered as a 1-cycle over Z,) is Z-homologous to zero in
M3; and in the same semse, each polyhedral simple closed curve in
U—X is Z,-homologous to zero in M?*—X. (In particular, this condition
is met if M®is E® or S3, and of Hy(M?*—X; Z,)=0.)

(iii) Suppose that X 1is connected and strongly 1-acyclic over Z,.
Then X is strongly acyclic over Z, if and only if some connected, open
neighborhood U of X in M?® has these properties: each polyhedral 2-
sphere in U separates U; and for each p, < U —X there is an open set
V, XCVCU, such that no polyhedral 2-sphere in V separates p from
gin U.

(iv) Suppose that X is connected and strongly l-acyclic over Z,
and that some neighborhood of X in M?® contains no Z,-homology 3-cells
which fail to be simply connected. Then X is strongly acyclic over Z, if
and only if X has property 2-UV.

Although the following result and its corollary will not be needed
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for the later proofs, we think they have interest for their own sake.
They may be regarded as extensions of the theorem of Case and
Chamberlin [10, Theorem 1] to the effect that a 1-dimensional
continuum X is treelike if and only if X admits no essential mapping
into a finite, connected graph. It is not hard to show that a compact
set X CE" has property UV= if and only if X admits an essential
map into #o finite polyhedron of dimension £ (n—1).

ProposiTION. Let X be a compact set which embeds in E3. Then X
has property 1-UV if and only if X admits no essential mapping into a
wedge W of two 1-spheres.

Proor. We may assume that X is a subset of E3. Any mapping of
X into W extends to an open set in E? containing X, and hence cannot
be essential if X has property 1-UV (recall that W is aspherical,
i.e., mi(W) =0 for =2, and hence a mapping of a finite polyhedron
into W is inessential if and only if it induces the trivial homo-
morphism on fundamental groups).

Now suppose that X admits no essential mapping into W. Then
no component of X admits such a mapping, and it suffices to estab-
lish our result with the added hypothesis that X is a continuum in
E3. Since S' is a retract of W, there is no essential mapping of X into
St. We shall use this last fact to show that X is strongly 1-acyclic
over Z. By Lemma 1, part (ii), we have only to show that each poly-
hedral simple closed curve J in E?*—X, when considered as a 1-cycle
over Z, is homologous to zero in E? — X.

Note that the “abelianizer” homomorphism of m(E3—J) onto Z
sends each loop in E3®—J to its integral linking number with J,
Using the asphericity of .S, we can construct a mapping R: E? — J—S!
which induces this abelianizer homomorphism on fundamental groups.
(In fact, we could use the technique of [13, Theorem 5] to construct
an appropriate retraction.) The composition of the inclusion X —E?
— J with the mapping R is by hypothesis an inessential mapping of
X into S'. Hence there is a neighborhood N of X in E?—J such that
each simple closed curve in IV has integral linking number zero with
J. By repeating the type of argument required for the “only if”
claim of Lemma 1, part (ii), we find that J is homologous to zero in
E-X.

It follows from the above that X is strongly l-acyclic over Z.
Thus our Corollary 2.1 applies. Let Hy, H, -+ - - be the 3-manifolds
given by that corollary’s conclusion, with X =0;2,H;. Each @® men-
tioned in Corollary 2.1 is bounded by 2-spheres, and hence in this
case is simply connected. Fix a value of 7. Then H; is a regular
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neighborhood of a finite wedge A4; of 1-spheres and 2-spheres (the
number of j-spheres in 4; may be zero, j=1, 2). But given such a
wedge 4, some mapping of 4; into W induces a monomorphism on
fundamental groups (first retract the 2-spheres to the wedge point,
then apply problem 2 of [21, p. 112] to complete the construction).
Thus, some mapping R;: H;—W induces a monomorphism on funda-
mental groups.

Since R;l X is an inessential map of X into W, there is a neighbor-
hood N of X in H; such that R;| X extends to an inessential map F;
of N into W. If now N is further restricted, say to No (X CN,CN),
we may then assume that Fil Nyand Ril N, are homotopic mappings
into W. Hence Ril N, is inessential. By our “monomorphism” prop-
erty of R;, the inclusion No—H; induces the trivial homomorphism
on fundamental groups. The result follows.

REMARK. Similar methods show that a compact set X CE? is
strongly acyclic over Z if and only if X admits no essential mapping
into S* (r=0, 1, 2). Finally, there is a combined formulation of these
results which seems especially appealing.

CoROLLARY. Let X be a compact set which embeds in E®. Then X
has property UV= if and only if X admits no essential mapping into
the following finite 2-complex: the disjoint union of S? and a wedge
of two 1-spheres.

3. Detecting 1-UV elements in acyclic decompositions. The next
theorem and its corollaries are among our most useful results. In its
proof and later, let us agree to call a set SC M* saturated (with respect
to the mapping P: M*—Y), if P~1P(S)=.S. The reader should note
that the “UV?” type requirement for P~1(yo) in Theorem 3, is met
whenever Y is locally simply connected at y,. This means that each
neighborhood NV of y¢in ¥ contains a neighborhood W of y, such that
each loop in W is contractible in N.

Let a be an ordinal, and let p denote 0 or a prime. A compact,
connected set X C M* has an (a, p)-trivial w,-shape (n=1) if for each
open, connected set UC M* such that X C U, there is an open set
V, XCVCU, such that each singular n-sphere in V represents an
element belonging to the term F, of the p-central series of the group
F=m,(U). As expected, this is a topological property of X with re-
spect to embeddings in manifolds.

The “local connection” terminology of Corollary 3.1 is due to
George Kozlowski [16]. A special case of Corollary 3.1 has been
proven by Alden Wright in [35].

THEOREM 3. Let M* be a k-manifold, possibly with boundary, and
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let P be a compact, monotone mapping of M* onto a nondegenerate
Hausdorff space Y. Suppose that for each y&Y, P~ (y) is strongly
1-acyclic over Z, (p =0 or a prime). Suppose that the following property
holds for some yo& Y: For each open set UC M* such that P~'(y,) C U,
there is an open set V, P~1(y,) CVC U, such that each loop in V pro-
jects under P to a contractible loop in P(U). Then P~'(yo) has an
(w, p)-trivial mi-shape. Hence, if P~1(y,) embeds in an orientable, non-
closed 3-manifold (e.g., E®) contatning no Z,-homology 3-cells which
Sfail to be simply connected, then P~1(y,) has property 1-UV.

Proor. Note that X =P-'(y,) is a proper, compact connected
subset of M*. Let an open, connected set UC M* be given, XCU.
Since P is a closed mapping, P(U) contains a neighborhood of y,& Y,
and so there are saturated, open, connected sets V, V,, with

XCVCV,C PPV, CU,

and such that each loop in V projects under P to a loop which is
contractible to a point in P(V,).

Let G be the monotone decomposition of U consisting of the sets
P-1P(z) for all 2E7V,, together with the individual points of U
—P-1P(V,y). G is upper semicontinuous because P-1P(V,) is a
saturated, closed set in M* and because

{P():y € T}
is an upper semicontinuous decomposition of M*. Further, each loop
in V projects to a contractible loop in the decomposition space U/G.
Hence, applying Corollary 1.1 (with z=1) to the projection mapping
U—U/G, we find that each loop in V represents an element belong-
ing to the term F, of the p-central series of the group F=m1(U). The
result follows.

For our last conclusion, suppose that X *C M? is a homeomorph of
X, where M3 is an orientable, nonclosed piecewise-linear 3-manifold
which contains no Z,-homology 3-cells which fail to be simply con-
nected. We may assume that X*CInt M? and it suffices to show that
X* has property 1-UV.

If U is a given neighborhood of X* in M?, some polyhedral neigh-
borhood H? of X* in U has the structure described in Corollary 2.1.
Moreover, we may demand in this case that the 3-manifold Q® in
that corollary’s conclusion be simply connected (see Remark 1
following Corollary 2.1.) In particular, m(H?) is a free group. Let
V be a neighborhood of X* in H? such that each loop in V represents
an element belonging to the term F, of the p-central series of the
free group F=m;(H?). (Such exists by the first part of our proof.)
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But F,=1by Theorem 6.3 of [32]. This completes our proof.

CoRrROLLARY 3.1. Let M3 be a piecewise-linear 3-manifold, possibly
with boundary, and let P be a compact mapping of M? onto a nonde-
generate Hausdorff space Y. Suppose that for each y&V, P-1(y) is
strongly 1-acyclic over Z, and has an orientable neighborhood in M3
(if p>2). Suppose that P is a local connection in dimension 1. Then,
for all but a discrete set D of points y& VY, P~1(y) has property 1-UV.
In fact, for each compact 3-manifold N* (possibly with N®— M3# &),
there exist only a finite number of y& D for which P~'(y) CN®.

Proor. The requirement that P be a local connection in dimension
1 yields two facts: P is monotone, and the hypothesis of Theorem 3
holds for each y¢& Y. We need only the additional information that
a compact 3-manifold N? contains but a boundedly-finite number of
disjoint Z,-homology 3-cells which fail to be simply connected. For
more details on this last matter, see [35]. An application of Theorem
3 then completes the proof.

Recall that a compact decomposition of M3 is one whose elements
consist of the components of some compact set KC M3, plus the
individual points of M?®—K. We adopt the convention that a com-
pact decomposition of M? must yield a nondegenerate decomposition
space. Thus, for each compact, proper subset of M3, we may speak
of the compact decomposition of M? associated with K. If K is also
connected, then its associated decomposition space is usually called
M3 modulo K.

If G is an upper semicontinuous decomposition of M3, let H¢
denote the union of the nondegenerate elements of G, and let Pgq
denote the projection mapping of M? onto the decomposition space
M3?/G. In particular, a compact decomposition G of M? is the com-
pact decomposition of M3 associated with Hg, and Pe(Hg) is com-
pact and O-dimensional. If F and G are compact decompositions of
M3, then, following [5], we say that F is equivalent to G if some
homeomorphism % of M3/F onto M?®/G carries Pr(Hr) onto P¢(Hg).
We call & an equivalence from F to G. A compact decomposition G of
M3 is strongly acyclic over Z, if each component of Hg is strongly
acyclic over Z,.

We now draw several conclusions about equivalent compact
decompositions. For simplicity of statement, we restrict ourselves
to the consideration of E3.

COROLLARY 3.2. Let F and G be compact decompositions of E°.
Suppose that F is strongly acyclic over Z,, and that h is an equivalence
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from F to G. Then G is strongly acyclic over Z,. Further, if h(Pr(f))
=P q(g) for some fEF and gEG, then f has property UV= if and only
if g has property UV=,

Proor. The strong acyclicity of G follows from Lemma 1, parts
(ii) and (iii). Now suppose that f has property UV®, We claim that
Pg is a “local connection in dimension 1, at g” in the sense that the
last part of the hypothesis of Theorem 3 holds (with g=Pg'(yo)).
Theorem 3 then will reveal that g has property 1-UV, and hence
property UV,

To prove our claim, let a connected, open set UCE?, gCU, be
given. Since G is strongly acyclic over Z,, Corollary 2.1 provides a
polyhedral cube-with-handles V*C U, gCIntV3, such that H¢MaV?
= . Further, by the UV* property of f, we may suppose further
that Py'h—1Pg(V?) is contractible to a point in P7 A "Pg(U). Now a
given loop in V3 is freely homotopic in V? to a loop ¢ in d V3. But the
loop to=P;'h~'P¢} contracts in Pg'h~'Pg(U). Thus hPpto=Peh
contracts in P ¢(U). This establishes our claim. Previous remarks and
symmetry complete the proof.

REMARK. It follows from Corollary 3.2 that if the complement of
a compact set X CE? is homeomorphic to the complement of some
compact set with property UV®, then X also has property UV®.
Further, by our next corollary, E!*—X is homeomorphic to the
complement in E? of a treelike continuum.

COROLLARY 3.3. Let the compact decomposition F of E® be strongly
acyclic over Z,. Then there is a compact decomposition G of E3, with H g
one-dimensional, and an equivalence h from F to G. Further, G ts
strongly acyclic over Z,, and if h(Pr(f)) =Pa(g), for some fEF with
property UV® and for some gEG, then g also has property UV® (and
hence is treelike).

Proor. This is immediate from our Corollary 2.1, [5, Theorem 8],
and the previous corollary. For the parenthetical remark, see [10,
Theorem 1], or see [33, Theorem 2], and recall that a compact set in
E* with property UV®, is cellular in E**! (cf. the second paragraph
of the introduction to [24] and [24, Corollary to Theorem 8]).

COROLLARY 3.4. Let G be a compact decomposition of EE. Suppose
that (E3/G) X E* is topologically E*** for some integer k. Then each
component of H g has property UV=.

Proor. Note that E?/G, as a retract of E***, is locally contractible.
Hence, the result will follow from Theorem 3, once it is shown that
H g is strongly 1-acyclic over Z; and has property 2-UV.
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Let G* be the upper semicontinuous decomposition of E3*+* whose
nondegenerate elements are precisely the nondegenerate sets of the
form gX {t}, where g&G and t€E*. Then there is a compact map-
ping P of E3** onto E*** whose induced decomposition into point-
inverse sets is precisely G*.

Let P:S+— S+ be the obvious extension of P to the one-point
compactifications S**=E+\U{p,}. Let S=(HgXE")Up,, and
note that PISW‘——S is a homeomorphism onto S**— P(S). But
S3+k— S is topologically (E3—H )X E¥, and hence E*—Hg has the
homotopy type of S*+* minus the compact, k-dimensional set P(S).
Since P(S) is strongly (k-1)-acyclic over Z, and does not separate
Ss+k it follows that Hy(E3—Hg;Z:) =0, and that E*—Hg is con-
nected. According to Lemma 1, Hg is strongly 1-acyclic over Z,
and has property 2-UV. This completes the proof.

Our next corollary is known in the case that k=3 and Pg(Hge) is
compact and O-dimensional. Independent proofs of this case were
given by the author in [26, Addendum 2 to Theorem 5], and by
H. W. Lambert in [20].

CoOROLLARY 3.5. Let G be an upper semicontinuous decomposition of
E* into compact, connected sets such that the decomposition space E*/G
is an open k-manifold. Suppose that Pg(Hg) is 0-dimensional. If
k#4, then E*/G is topologically E*. If an element go&G admits an
embedding in E3, then go has property UV=. In particular, if each gEG
embeds in E? and k#4 (for example, suppose k=3), then G is a cellular
decomposition of EF.

Proor. If £=2, then the hypotheses of the first sentence of our
corollary imply that G is cellular and that Y*=E*/G is topologically
E*, Hence, assume k= 3.

By Lemma 5 below, each g&G is strongly acyclic over Z, and
hence H;(Y*; Z)=0 for ¢>0. Further, Pgq:EF—Y* is monotone, so
that Y* is simply connected (see [16], e.g.). Thus, ¥* is contractible.
Again using the fact that Pg is monotone (and the resulting “ms-
surjection” property), it follows that Y* is 1-LC at infinity, in the
sense of [28]. Hence, for £>4, Y* is topologically E* by [28, Theorem
1.1]. For k=3, Y?is topologically E* because of [6, Theorem 3] and
the fact that G is a cellular decomposition, as will be indicated.

If some go&G embeds in E?, then go has property UV® by our
Theorem 3 and [19]. If each g&G embeds in E3, then each g&G has
property UV=® and if k4, G is cellular by, e.g. [1, Theorems 5.5 and
5.6]. (See also [27], [22], [25], [15], and [19].)

We now present a sequence of lemmas leading to a proof of the
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acyclicity claim needed above. The first lemma is an exercise in
excision, and its proof is omitted.

LeEMMA 2. Let ZCWC M*, where Z is compact, and W is an open,
connected subset of the open k-manifold M*. If a (finite, singular) inte-
gral i-cycle in W is homologous to zero in MP* then it is homologous in
W to an i-cycle in W—Z.

Suppose U is a collection of subsets of the topological space ¥,
and BCY. The star of B with respect to U, or st(B, U), is the union
of all elements of U which intersect B. The union of all the sets in U
is denoted by U*. If U and U are collections of open sets in ¥, then
(as in [6]) U star n-homotopy refines U if for each VEQD there exists
Uca such that st(V, V)CU, and for 0=k=n, each singular k-
sphere in st(V, V) is contractible in U.

CoNVENTION. For Lemmas 3 and 4, assume the following notation.
X is an LC*! (z=1), locally compact metric space. G is an upper
semicontinuous decomposition of X into compact, connected sets.
(The decomposition space ¥ =X /G is necessarily metrizable.)

LeMMA 3. For each collection U of open sets in Y, there is a collection
V of open sets in Y such that Pg'(?V) star (n—1)-homotopy refines
Pgl(w), and u*—0*CPe(He).

Proo¥. The proof is a variation of that of [6, Lemma 3.1]. Sup-
pose U is given. Let W*=BC Y and Pg'(B)=4CX. Let Ky, Ky, - - -
be a locally finite (with respect to 4) collection of compact sets in 4
whose interiors cover 4. There is an ¢;>0 such that if a set SCX
has diameter less than ¢; and if SNK;# &, then SCR, an open set
in A such that for 0k =<n—1, each singular k-sphere in R is con-
tractible to a point in an element of Pg'(U). Let M; be the union of
all g&G such that g intersects K; and g has diameter at least €;. By
[34, Corollory 2.61], each set Pg'Pq(K;) is compact, and so My,
My, + - - is a locally finite collection of compact sets in 4. Thus,
M=U;>,M,is closed in 4.

Define C=Ps(M), a relatively closed set in B. Clearly, if yEB —C,
then there is a saturated open set W,C A — M such that Pg'(y) CW,,
and such that for 0=k =<n—1, each singular k-sphere in W, is con-
tractible to a point in some element of Pg'(U). Thus,

W = {Pe(W,):y € B— C}

is an open covering of B— C. We take U to be any open star refine-
ment of W covering B — C. The proof is complete.

LeMMA 4. For each open covering U of Y, there is a closed set
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CCPg(Hg) (C depends only upon U and n) such that the following
holds: Suppose g is a map from a finite simplicial complex K of di-
mension n or less, into Y — C, and f is a map from a subcomplex L of K
into X —Pg'(C), such that g|L=Pc,vf. Then f extends to a map F
sending K into X such that for each 2E K, there exists an element of U
containing both g(z) and PeF(2).

Proor. The proof is similar to that of [6, Lemma 3.2]. Suppose that
U and % are specified. Let U, be an open covering of ¥ which star
refines U. By Lemma 3, there are collections Un—3, WUpg, * =+, Wp
of open sets in ¥ such that (for 0=i<n—1): Pg'(U;) star (n—1)-
homotopy refines Pg'(WUiy1), and

Wipr — Wi C Pe(Ho).

Define C= Y —Aa". Clearly, CCP¢(Hy) is closed.

Now suppose that maps f and g are given as described above.
Assume that dim K =#. We construct an extension F of f to K,
essentially as in [6, Lemma 3.2]. (We begin with the second para-
graph of their proof, noting that their Ui’s cover X rather than Y.)

Briefly, find a subdivision T of K so that for each ¢ & T, g(o) lies
in some element of Uy. We construct inductively a sequence of maps

FuT'>Pg(u), O0=is=n,

(T%=1-skeleton of T') such that

(1) if >0, F; extends Fi_,,

(2) Fiagreeswithfon |L| M| T, and

(3) if e*E T, then Fi(c%) Csome element of Pg*(U;). We leave to the
reader the minor changes necessary in the construction of [6].

In place of the last paragraph of their proof, we have only to note
that for each z&K, g(z) and PeF(2) lie in intersecting elements of
U,, and hence some element of U contains them both. In fact, if o
is a simplex of T containing 2, then PgF(o) lies in some element of
a,, and g(o) lies in some element of U,. These two elements meet
in the point g(v) = PeF(v), where v is a vertex of ¢.

The reader may wish to compare our next result with those of
[29]. The homology and cohomology groups below are understood
to have Z coefficients. In [19], Lacher has shown that a compact,
connected set gCC M* is strongly acyclic over Z if and only if it is
cohomologically trivial over Z. More precisely, properties (k—1)-
uv(Z) and k-uv(Z) together imply H*=0. Conversely, if H*=Hr+
=0 for g, then g has property k-uv(2).

LeMMA 5. Let G be an upper semicontinuous decomposition of an
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open k-manifold MF* into compact, connected sets such that the decompo-
sition space Y*=M*/G is also an open k-manifold, k = 3. Suppose that
Pg(Hg) ts 0-dimensional. Suppose also that the following holds (as
it does, e.g., if M*=FEF): For each g&G, there is an open set U,,
gC U, CM*, such that under inclusion,

Hy(U,) — Hi(M¥)

is gero for i=1, - - -, n=[k/2]. Then each gEG is strongly acyclic
over Z.

Proor. Note that since n=1, each U, is orientable. We will show
that each g&G has property s-uv(Z), ¢=1, - - -, n, and hence is
cohomologically trivial (over Z) in dimensions 1, - - -, n. By the
proof given for [17, Theorem 4] (the statement in [17] is incorrect),
it will then follow that H*(g) =0, for each gEG, and hence that each
2E&G has uve(2).

Our goal, then, is to prove that if B* is an open k-cell in Y* such
that W= Pg'(B*) has compact closure and is contained in some U,,
then H;(W)=0 for 1 £<=<n. Note that W is connected, because G is
monotone.

By Lemma 4, there is a closed (in B*) 0-dimensional set
CiCPg(Hg) corresponding to the one-element covering of B*, and
to the integer (k—1). Let U be an open covering of B¥— C; with this
property: If fi, f» are mappings of any space Z into B*¥— C; and if for
each z& Z there exists some element of U containing both f;(z) and
f2(2), then f; and f, are homotopic as mappings of Z into B*— (.
Finally, apply Lemma 4 (with Y=B*— () to obtain a closed (in
B¥— () set C4C Pg(Hg), corresponding to U and to the integer k.
Put C,= Ci\UC}, a relatively closed set in B*. Let C;" denote Pg*(C}),
ji=1,2.

Consider portions of the two exact homology sequences of pairs

below, and the vertical homomorphisms between them induced by
P G

s H(W - ) S HW) > - -

! !
- — H,(B* — Cy) > Hy(B*) — - - -

An easy argument using [34, Corollary 2.61] and our Lemma 2, re-
veals that «; is an epimorphism for 2=<#. We claim also that «;
is zero for ¢ =<n. The proof of this assertion will complete our argu-
ment.
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Suppose, then, that xEH,;(W — Cy), where i <n is fixed. Construct
an oriented, homogeneously i-dimensional, finite polyhedron Q
whose combinatorial boundary (over Z) is zero, together with a map
h:Q—W—C; whose induced homomorphism %« takes the orienta-
tion class ¢q of Q, to x. Since H;(B*—C,) =0 (because ¢ <k —2), there
is a finite, k-dimensional polyhedron K CB*— C, such that if # =Pgh,
then 7(Q) CK and m«(cq) =0&EH;(K). Consider the consistent dia-
gram

h u w
Q - W — Cz*—>W - C1*">W
L ] s , !
K'—>B"" - Cz-*Bk—Cl

in which the horizontal maps, other than %, are inclusions, and the
vertical maps, other than 7, are restrictions of Pg.

By our choice of C; and U, there is a map S: K—W —C; such that
PeS and vs are homotopic maps of K into B*—C;. Hence, Peuh
and PgSm are homotopic maps of Q into B*— C;. By our choice of
C1, wuh and wST are homotopic maps of Q into W. Thus,

(a,')*(x) = w*u*h*(cQ) = W*S*r*(t?q) =0¢c H,(W)

This is the desired result.

ExaMpPLE. There is a continuous, onto mapping P:S54*—S*such that
each P-1(y) is strongly acyclic over Z, yet some point-inverses fail
to have property 1-UV. For as Mazur shows in [23], S* can be ex-
pressed as the “double” of a certain compact, contractible 4-manifold
whose boundary M?® has the homology (over Z) of S8, but M3 fails to
be simply connected. There is a piecewise-linear homeomorphism %
of M3*X[—1, 1] onto a neighborhood N of M? in S% Let K be M?
minus the interior of a 3-simplex, so that m(K) =m(83). Then the
nondegenerate point-inverses of P are the sets 2(XK X {t}), te(—1,1),
plus the closures of the two components of S*— N. Similar examples
of maps S"—S" are possible for each n=4.

4. A monomorphism theorem and some applications. If f:X—Y
is a map, let S;CX be the singular set of f. That is,

Sy = {x € X:f () # a}.

It seems of interest to note here that Px in Theorem 4 below may
fail to be an isomorphism. In fact, R. H. Bing has announced in [7]
that E® modulo a solenoid is not simply connected.



960 D. R. McMILLAN, JR. [September

THEOREM 4. Let M3 be a piecewise-linear 3-manifold, possibly with
boundary, and let P be a compact, monotone mapping of M3 onto a
Hausdorff space Y. Suppose that there is a compact set A CM? such
that S, C A and such that each component of A s strongly 1-acyclic over
Zy, Where p=0 or a prime. If some compact, polyhedral 3-manifold H
has m(H) free and if ACHCM?, then the kernel of the homomorphism

Pyimy(M?3, x0) — (Y, P(x0))
s trivial.

Proor. There is a compact, monotone mapping P, of M3 onto a
Hausdorff space Y, such that the nondegenerate point-inverses of
P, are precisely the nondegenerate components of A4, and such that
PoP-1is a well-defined mapping of ¥ onto Y,. Further, if P, induces
a monomorphism on fundamental groups, so also does P. Hence,
we assume without loss of generality that the nondegenerate point-
inverses of P are precisely the nondegenerate components of 4.
(Weshall later need the fact that P(4) is compact and 0-dimensional.)

Let L=0A% Suppose that g:A?—Y and f:L—M? are maps with
g|L=Pf. We wish to show that f is homotopic in M3 to a constant
map. Since H\UP~1g(A?) is compact, we may assume, by the existence
of regular neighborhoods, that M? is compact. By attaching a collar
to 0M? and redefining Y, if necessary, we may also suppose that
AClInt H and P 1g(A2) Clnt M3,

Let T be a triangulation of M? in which H appears as a full sub-
complex. There is a finite, polyhedral graph I' in M?®—H such that
the complement of a close, open regular neighborhood of T is a regu-
lar neighborhood of H\UT". For example, take I' to be that sub-
complex of the first-derived 7" which is maximal with respect to not
intersecting H\UT". In particular, m(M*—T') is a free group. By
performing a homotopy, if necessary, we may assume that f(L)
misses I', and we may further adjust g so that g='P(T") is a finite set.

Let oy, + - -, ax be a finite, disjoint collection (possibly empty) of
polyhedral arcs in A2—g—1P(A4) such that each «; intersects each of
0A2, g1 P(T") precisely in one of its endpoints, and such that no arc in
A?—g—1P(4) joins a point of g~1P(T') — UL, o to dA2. After removing
close, disjoint regular neighborhoods of the a;'s in A2—g=1P(4) and
redefining g, f, etc., we can assume that no component of A2—g=1P(4)
intersects both g~'P(I") and 0A2.

We now claim that Pf is homotopic to a constant map in Y —P(T").
If this can be shown, our proof will be complete. For an application
of Corollary 1.1 (with #=1) to the 3-manifold M?—T then will reveal
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that the element of m(M?—T') represented by f belongs to the wth
term of the p-central series of that free group, and hence represents
its identity element (see [32, Theorem 6.3]).

If g~1P(T') =&, then the claim of the previous paragraph is obvi-
ous. Suppose U is a component of A2—g~1P(4) with UNg-PT)
# & (so that UCIntA?). Let DCU be a polyhedral disk whose
interior contains UNg~!P(I'). To establish our claim, it suffices to
show that for each such U and D, the loop glc’)D is contractible in
Y—P(I).

To see this, consider the 2-manifold Uy= U —1Int D, with d Uy=9D.
It is not hard to see that if we decompose U, into the single points
of Uy and the components of Uy— Uy, then the resulting decomposi-
tion space Z is a disk. But each component of Uy— U, is a connected
subset of g~1P(4), and hence is mapped to a point by g. Thus, gl T,
can be expressed as the composition of the quotient map U,—Z,
and a map Z—Y—P(I"). Hence, g|6U0=g|6D is an inessential map
into Y—P(I"). The result follows.

REMARK. The requirement in Theorem 4 that some polyhedral
3-manifold H with free fundamental group should contain A4, can
be suppressed if we demand that M? be orientable (when p>2)
and that M?® contain no Z,-homology 3-cells which fail to be simply-
connected. This follows from Corollary 2.1.

Recall our earlier convention and notation about compact de-
compositions.

COROLLARY 4.1. Let M3 be a piecewise-linear 3-manifold, possibly
with boundary, and let G be a compact decomposition of M3. Suppose
that each element of G is strongly 1-acyclic over Z, and has property 2-
UV. If p>2, assume also that M? is orientable. Then for each open,
connected set UCM3/G,

Pg| P& (U):P5'(U) » U
induces a monomorphism on fundamental groups.

Proor. Suppose g:A:—U and f:0A*—Pg'(U) are maps with
g|0A2=Pgf. Let F be the compact decomposition of Pg'(U) asso-
ciated with the compact set H ¢\ Pg'g(A?). An application to Pr of
Theorem 4 (and its remark) then yields the result.

Question. Does the conclusion of Corollary 4.1 follow if we retain
the hypothesis that the elements of G be strongly acyclic over Z,
and have property 2-UV but, relax the requirement that the closure
of Pg(Hg) in M3?/G be compact and 0-dimensional?

Our next result is an improved version of [5, Lemma 1].
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COROLLARY 4.2. Let F and G be compact decompositions of E3. Sup-
pose that F s strongly acyclic over Z, and that h is an equivalence from
Fio G. Let dq metrize E?/G. Then for each positive e, there is a homeo-
morphism R of E® onto E® such that R agrees with Pg'hPr off the e
neighborhood of Hp, and

de(PgR(x), hPp(x)) < e  foreach x &€ E3.

In particular, if hPr(f) =Pg(g) for some fEF and g&EG, then f is
cellular if and only if g is cellular.

Proor. Since F is strongly acyclic over Z,, Hr is definable by
cubes-with-handles by Corollary 2.1. Thus, the e-neighborhood of
Hr contains a compact polyhedron L? each of whose components is a
cube-with-handles (ZrCInt L?), and such that APr(K) has diameter
less than e for each component K of L3. It suffices to show that for
each component K of L3, some homeomorphism of K into the com-
pact 3-manifold K;=Pg'hPy(K) extends Pg'hPy|dK.

The proof of J. Hempel's [13, Theorem 4] yields the fact that this
extension is possible if and only if: For each polyhedral disk DCK,
with dD=DNIK, it follows that Pg thpl 0D represents a con-
tractible loop in K;. But this condition is met because of Corollary
4.1. The demonstration of our last claim about cellularity is routine,
and is left to the reader.

Following M. L. Curtis in [11], we say that a separable metric n-
dimensional space Y is a homotopy n-manifold if each y&EY has
arbitrarily small pairs of connected, open neighborhoods VC U such
that VC U, V—V is connected, and the image of m(V—%) in m
(U —9) under the inclusion-induced homomorphism is isomorphic to
m(S™ 1) for each k. Curtis obtained the next result in the case when
G has only finitely many nondegenerate elements. In his situation,
it is unnecessary to assume that G is strongly 1-acyclic.

CoROLLARY 4.3. Let G be a compact decomposition of E3. Suppose that
each element of G is strongly 1-acyclic over Z,. If Y=FE?/G 1s a homo-
topy manifold, then each element of G is cellular in E3.

Proor. Since the proof is straightforward, we give only an outline.
First of all, we use the existence, at each point of Y, of small neigh-
borhoods with connected boundaries to show that each element of
G has property 2-UV (see Lemma 1, parts (iii) and (iv) and recall
that the pre-image under P¢ of a compact and connected set is
compact and connected).

Hence our Corollary 4.1 applies. It and the defining property (for
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k=1) of a homotopy 3-manifold can be used to verify the “cellularity
criterion” hypothesis of [26, Corollary 3.2], which then gives our
desired conclusion. Of course, the corollary quoted must be strength-
ened, using our present results, to cover the case p>2.
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