GROWTH RATE OF GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS

BY STEVEN OREY

Communicated by David Blackwell, November 3, 1969

1. Statement of results. Let $(Y, t, t \ge 0)$ be a real, separable Gaussian process with stationary increments, mean 0, and $Y_0 = 0$. Let 2Q(t) be the variance of Y_t and define

$$X_t = Y_t/(2Q(t))^{1/2}$$
.

THEOREM 1. Suppose there exists a nonnegative function v(t) such that

(*)
$$\lim_{t \to \infty} \frac{Q(s+t) - Q(s)}{v(s+t) - v(s)} = 1 \quad uniformly \text{ in } s$$

and there exist positive constants s_0 , β_1 , β_3 with $1 \le \beta_3 \le (\beta_1/2 + 1)$ such that

- (i) is monotone nondecreasing,
- (ii) $v(\lambda s) \ge \lambda^{\beta_1} v(s) > 0$, $s \ge s_0$, $\lambda \ge 1$,
- (iii) $v(\lambda s) \leq \lambda^{\beta s} v(s)$, $s \geq s_0$, $\lambda \geq 1$

and suppose that there exists $\beta_2 > 0$ such that

(iv)
$$O(t) = O(t^{\beta_2}), \quad t \downarrow 0.$$

Then

$$\lim_{t \to \infty} \sup (X_t - (2 \log \log t)^{1/2}) = 0 \quad a.s.$$

In fact somewhat more is true.

THEOREM 2. Under the assumptions of Theorem 1,

$$\lim_{T\to\infty} \left(\sup_{t\leq T} X_t - (2\log\log T)^{1/2}\right) = 0 \quad a.s.$$

An important class of examples is obtained by taking $Y_t = \int_0^t Y_s^t ds$ where (Y_s^t) is a real stationary Gaussian process with mean 0 and continuous sample functions. If q(|t-s|) is the covariance of the (Y_t) -process and $R(t) = \int_0^t (q(s)ds)$ then $Q(t) = \int_0^t R(s)ds$. If v(t) is a differentiable function satisfying conditions (i), (ii) and (iii) of The-

AMS Subject Classifications. Primary 6030, 6069.

Key Words and Phrases. Gaussian processes, stationary increments, law of the iterated logarithm, limiting distribution of the maximum.

orem 1 and $R(t) \sim v'(t)$ as $t \to \infty$, then (*) will hold, and condition (iv) will hold with $\beta_2 = 2$. In particular if R(t) tends to a positive constant K, the hypotheses of the theorem will be satisfied with v(t) = Kt. This will be the case if q(t) is always nonnegative and tends to zero sufficiently rapidly as t approaches infinity, e.g. when (Y_t) is the stationary Ornstein-Uhlenback process with covariance $e^{-|t-e|}$.

2. Idea of proof. Note that the covariance of (Y_t) , hence that of (X_t) depends only on the function Q. In fact

$$E[Y_{\bullet}Y_{t}] = Q(s) + Q(t) - Q(t-s).$$

The results are reduced to the following theorem on stationary Gaussian processes; the proof is given in [1].

THEOREM (PICKANDS). Let $(Z_t, t \ge 0)$ be a real, separable, stationary Gaussian process, with mean 0 and covariance r(|t-s|) such that for some $\alpha > 0$,

$$1-r(t)=O(t^{\alpha}), \qquad t\downarrow 0$$

and

$$r(t) = O((\log t)^{-1}), \qquad t \to \infty.$$

Then

$$\lim_{T\to\infty} (\sup_{t\leq T} Z_t - (2 \log T)^{1/2}) = 0.$$

The plan is to compare $X_{\iota}^* = X_{e^{\iota}}$ with stationary processes to which the theorem of Pickands is applicable. In [2] the following important result is proved.

LEMMA (SLEPIAN). Let X_j^+ , X_j^+ , j=1, $2 \cdot \cdot \cdot N$ be two Gaussian sequences of random variables, with mean 0 and covariances $r^-(i, j)$, $r^+(i, j)$ respectively, $1 \le i \le N$, $1 \le j \le N$. Suppose

$$r^{-}(i,i) = r^{+}(i,i), i = 1, 2 \cdot \cdot \cdot N; \quad r^{-}(i,j) \le r^{+}(i,j), 1 \le i \le j \le N.$$

Then for any choice of constants a_j , $j=1, 2, \cdots N$

$$P\left[\bigcap_{j=1}^{N} \left[X_{j}^{-} \leq a_{j}\right]\right] \leq P\left[\bigcap_{j=1}^{N} \left[X_{j}^{+} \leq a_{j}\right]\right].$$

The argument essentially consists of showing that the hypotheses of Theorem 1 permit construction of stationary processes (X_i^-) , (X_i^+) satisfying the conditions of the theorem of Pickands and having covariances related to that of (X_i^*) in such a manner that Slepian's

lemma allows one to deduce that (X_i^*) also satisfies the conclusion of Pickands's theorem.

REFERENCES

- 1. J. Pickands III, Maxima of stationary Gaussian processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebeite 7 (1967), 190-223. MR 36 #955.
- 2. D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962), 463-501. MR 24 #A3017.

University of Minnesota, Minneapolis, Minnesota 55455