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1. Statement of results. Let (Y, ¢, £20) be a real, separable Gaus-
sian process with stationary increments, mean 0, and Y,=0. Let
2Q(t) be the variance of Y; and define

X = Y./(20(0))"2

THEOREM 1. Suppose there exists a nonnegative function v(t) such that

(%) im w =1 uniformly in s

t-o (s 4 £) — v(s)

and there exist positive constants so, B1, Bz with 1 B = (By/2+1) such
that

(i) s monotone nondecreasing,
(i) v(\s)2NPw(s)>0,  s=so, AN21,
(i) v(\s) SN%su(s), s=so, A1

and suppose that there exists B2>0 such that
(iv) Q@) = 0@, ¢l o.
Then
lim sup(X: — (2 log log H)¥/?) =0 aq.s.

—»
In fact somewhat more is true.
THEOREM 2. Under the assumptions of Theorem 1,

lim (sup X: — (2loglog T)/?) =0 a.s.
T—w 18T
An important class of examples is obtained by taking Y,=[§ Vids
where (Y}) is a real stationary Gaussian process with mean 0 and
continuous sample functions. If ¢(|t—s|) is the covariance of the
(Y)-process and R(f) =[i(q(s)ds then Q(f)=[¢{ R(s)ds. If v(t) is a
differentiable function satisfying conditions (i), (ii) and (iii) of The-
AMS Subject Classifications. Primary 6030, 6069.
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orem 1 and R(t)~v/(f) as t— =, then (*) will hold, and condition (iv)
will hold with B:=2. In particular if R(¢) tends to a positive constant
K, the hypotheses of the theorem will be satisfied with »(t) = K. This
will be the case if ¢(f) is always nonnegative and tends to zero suffi-
ciently rapidly as ¢ approaches infinity, e.g. when (Y}) is the sta-
tionary Ornstein-Uhlenback process with covariance e~!#2!,

2. Idea of proof. Note that the covariance of (Y;), hence that of
(X :) depends only on the function Q. In fact

E[Y,Y.] = Q(s) + Q) — Q@ — 9).

The results are reduced to the following theorem on stationary
Gaussian processes; the proof is given in [1].

THEOREM (PI1CKANDS). Let (Z;, t=0) be a real, separable, stationary
Gaussian process, with mean 0 and covariance r(|t—s|) such that for
some >0,

1 —r(t) = 0@, t]0
and
r(t) = O((log H)™), t— oo,
Then

lim (sup Z: — (2 log T)1/?2) = Q.
Tow (=T

The plan is to compare X = X with stationary processes to which
the theorem of Pickands is applicable. In [2] the following important
result is proved.

LemMA (SLEPIAN). Let X;, X, j=1,2 - - N be two Gaussian
sequences of random variables, with mean O and covariances r—(1, j),
r+(4, j) respectively, 1 <1< N, 1<j< N. Suppose

r=(i,4) = r*(3,4), s=1,2- .- N; r(i,7) = rt(i,7), 154 Sj=N.
Then for any choice of constants a;, j=1,2, -+ N
N N
P[n[X, éa,]]éP[n[X, éa,]].
=1 =1

The argument essentially consists of showing that the hypotheses
of Theorem 1 permit construction of stationary processes (X7), (X7)
satisfying the conditions of the theorem of Pickands and having co-
variances related to that of (X¥) in such a manner that Slepian’s
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lemma allows one to deduce that (X7) also satisfies the conclusion of
Pickands’s theorem.
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