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1. Introduction. In this paper we state some results concerning 
inverse limits and multicoherence and give applications to hyper-
spaces and inverse limits of special types of spaces. The proofs of 
these and other related results will appear elsewhere. 

By a metric continuum we mean a nonempty compact connected 
metric space. A space X is said to have property (b) (see [2, p. 63] or 
[10, p. 226]) if and only if, given a continuous f unction ƒ from X into 
the unit circle in the plane, there exists a continuous real valued 
function a defined on X such that ƒ(x) =eiaix) for each x£X. If X is 
a metric continuum, then we say that X has multicoherence degree k 
(see [3] or [10, p. 83]) provided l.u.b.{r(Xi, X2):Xi and X2 are sub­
continua of X with X^UX2~X] = k, where r(Xi, X2) denotes one 
less than the number of components of X\H\X2. The multicoherence 
degree of X is denoted by r (X) . We note that r(X) = 0 is equivalent 
to X being unicoherent. I t is well known that if X is a metric con­
tinuum with property (b), then X is unicoherent (see [2, p. 69] or 
[10, p. 227]), but not conversely. 

All inverse systems considered in this paper are countable and the 
inverse limit of an inverse sequence {Xi, /»}<°Li is denoted by proj lim 
{Xif fi\?~x. For notation and terminology relating to inverse limits, 
see [ l ] . 

2. Basic theorems. 

THEOREM 1. If X = proj lim{Xt-, /*}*li and, each space Xi is a 
metric continuum with property (b), then X has property (b). 

THEOREM 2. If X = proj lim{Xt-, /t}*°Li where, for each i = l , 2, 
• • • , Xi is a metric continuum, r(Xi) ^k, andfi is a mapping of Xi+± 

onto Xu then r(X) ^k. 

We note that if each of the bonding maps ƒ»• in Theorem 2 are 
monotone and r(Xi) = k for all i=l, 2, • • • , then r(X)=fe. This 
observation leads to very simple proofs of Theorem 4.8 and Theorem 
4.11 of [ l ] . 
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COROLLARY 1. If X = proj lim{X,-, f%\T-i where Xi is a unicoherent 
metric continuum and ft maps Xi+i onto Xifor each i~ 1, 2, • • • , then 
X is unicoherent. 

COROLLARY 2. Let X = proj lim{Xt-, /»}*°li where each space Xi is a 
compact metric space. If every subcontinuum of Xi has property (b) 
(has multicoherence degree ^k) for all i=l, 2, • • • , then every sub­
continuum of X has property (b) (has multicoherence degree ^k). 

Theorem 1 states that property (b) is preserved by taking inverse 
limits (with no restrictions on the bonding maps). Since property (b) 
is equivalent to unicoherence for locally connected metric continua 
(see [2] or [10, p. 228]), it follows from Theorem 1 that the inverse 
limit of locally connected unicoherent metric continua is unicoherent 
(note that the inverse limit space might not be locally connected). 
However, in general, an inverse limit of unicoherent metric continua 
need not be unicoherent. The following example illustrates this. 

EXAMPLE. For each i = 1, 2, • • • , let Xi = S1US where Sl is the 
unit circle in the plane and S= {((t+l)/t)e*rit:l ^t< 00 }. Also, for 
each i = l, 2, • • • , let riiXi+i-+Xi be given by ri(z)=z/\z\ for all 
2 £ X t + i . I t is easy to verify that the space proj lim{Xt-, r»}*°Li is 
homeomorphic to Sl but that each space Xi is unicoherent. 

3. Applications. In this section we state some results on hyper-
spaces and inverse limits of special types of continua. Their proofs 
utilize material in the previous section. 

Let 2X — {K:K is a nonempty compact subset of X} and let C(X) 
= {K:KÇZ.2X and K is connected}. The topology for 2X is the finite 
topology [7] (C(X)t as a subset of 2X carries the relative topology 
from 2X). Known theorems (see, for example, [5], [ó], [9], or [ l l ] ) 
indicate a general pattern that these hyperspaces are less pathological 
than the space. Our next theorem shows that if X is any metric con­
tinuum, then 2X and C(X) have property (b) and therefore are uni­
coherent. Of course, if X is locally connected, this is a simple conse­
quence of the result in [ l l ] . 

THEOREM 3. If X is a metric continuum, then both 2X and C(X) have 
property (b). 

A dendroid is an arcwise connected metric continuum such that 
each subcontinuum is unicoherent. The following corollary extends 
Lemma 3 of [8] which states that if a metric continuum admits a 
continuous selection [7] on its hyperspace of (nonempty) subcon­
tinua, then it is a dendroid. 

COROLLARY 3. If a metric continuum X is a retract of C(X) (we 
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consider X contained in C(X) as the subspace of singletons), then X is 
arcwise connected and has property (b). 

REMARK. I t is clear that if X is a locally connected metric contin­
uum, then X is a retract of 2X (or of C(X)) if and only if X is an 
absolute retract. We pose the following question. 

QUESTION. What are necessary and sufficient conditions in order 
that a metric continuum X be a retract of 2X or of C(X)? 

A dendrite [10, p. 88] is a locally connected metric continuum 
which contains no simple closed curve. A mapping / : Y—>Z is said to 
be monotone if and only iif~1(f(y)) is a continuum for each y G F (see 
[lO, p. 70 ] but note that we do not require ƒ to be onto Z). 

THEOREM 4. Let X = proj lim{Dif fi}^Li where Di is a dendroid f or 
each i = l, 2, • • 

1. If X is arcwise connected, then X is a dendroid, 
2. If X is locally connected, then X is a dendrite. 
3. If Di is a dendrite and fi is a monotone mapping of Di+\ onto Di 

for each i — \, 2, • • • , then X is a dendrite. 

Some of the results in [4] are simple consequences of the theorems 
in this paper and some can be extended using these theorems. The 
next corollary extends the theorem in [4] which states that if the 
inverse limit (with onto bonding maps) of arcs is locally connected, 
then it is an arc. 

COROLLARY 4. If X — proj lim {A t-, ƒ»•} £. x where A »• is an arc for each 
i=l, 2, • • • and if X is arcwise connected, then X is an arc or a 
singleton. 

PROOF. By Theorem 4, X is a dendroid. If X is neither an arc nor 
a singleton, then X contains a triod T. Using 2.8 of [l, p. 235] we 
see that T = proj lim{7r;(jT), /t-|7rf-+i(r) }*°Li- Since TTi(T) is an arc for 
each i — 1, 2, • • • , we have a contradiction. 

The results in §2 can be done in the setting of inverse systems over 
directed sets and general Hausdorff continua. Using this more general 
setting, Theorem 3 of §3 can be proved for X compact, connected, 
and Hausdorff. 

I t has been pointed out to me by Professor John Isbell that prop­
erty (b) is equivalent to H'(X, Z) = 0 so that Theorem 1 is a conse­
quence of the continuity of Cech theory. 
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