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1. Introduction, Let G be a LCA group for which the map x *-+2x is 
an automorphism, and let £:GXG—»GXG be defined by £(#, y) 
— (%+yt %—y)' We call a regular complex-valued measure i* on G 
Gaussian iff 3 a second measure v on G such that for all Borel sets 
EQGXG, 

(1.1) (M X n)(E) = (v X v){Z(E))-

One rationale for this definition is that any finite probability 
measure on R which satisfies (1.1) is a Gaussian distribution with 
mean 0. (See [l , p. 77] for a proof.) Another reason is that the 2-adic 
theta functions defined by Mumford in [2] are related to 2-adic 
measures satisfying (1.1) much as ordinary theta functions are re­
lated to the Gaussian distribution exp( — ax2)dx. 

Actually, we shall consider all set functions which are finite com­
plex linear combinations of regular measures on G. These need not 
be (7-additive measures (since the regular measures need not be 
bounded), but we shall use the term measure for such functions as 
well. 

The problem we consider is that of determining all Gaussian 
measures on G. In [2], Mumford did this in the case G = (C?2)n; in §§3 
and 4 of this paper we state the results for G = Rn and for G a compact 
group. One reason for considering these cases is given by the following 
structure theorem. 

THEOREM 1. If G is a LCA group such that o&-+2x is an automor­
phism^ then G can be written as VXWXGo, where V is a real vector 
group, W is a 2-adic vector group, and Go contains a compact open sub­
group for which xy-*2x is an automorphism. 

Another attack on the problem is considered in §2, where we 
consider Gaussian measures which are absolutely continuous (with 
respect to Haar measure). The rationale behind this approach is the 
following result. 

1 The results announced here are contained in the author's Ph.D. thesis at Harvard 
University, written while he held an N.S.F. Graduate Fellowship. 
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THEOREM 2. If p is Gaussian, then \i is either absolutely continuous 
or singular. 

However, the singular Gaussian measures are in general hard to 
analyze. 

2. The absolutely continuous case. Let /*, V, be absolutely contin­
uous measures on G satisfying (1.1), and l e t / , g be their respective 
Radon-Nikod^m derivatives. Then ƒ and g satisfy 

(2.1) f(x)f(y) = g(* + y)g(x - y) a.e. on G X G. 

THEOREM 3. Let f, g be nonnull functions satisfying (2.1). Then there 
is an open subgroup Go of G, closed under division by 2, such that f and 
g are nonzero a.e. on Go and are zero a.e. off Go. Moreover, there are con­
tinuous functions f o, go' Go—>CX, and a complex number Co, such that: 

(a) Cofo=ft ±Cogo = g a.e. on Gyfor some fixed choice of sign. 
(b) fo and go are quadratic characters {i.e., fo(x+y)/fo(x)fo(y) is 

bilinear in x and y, and similarly for go). 

I t follows from continuity that f0 and go satisfy (2.1) everywhere 
on Go and hence that go(x)2=fo(x). 

To show that Go exists is fairly straightforward; in what follows, 
we assume tha t Go = G. If (2.1) held everywhere, a n d / , g were never 
0, we would proceed as follows: let Co=/(0), and let /o= /Ao , go 
= g/±c0, where the sign is chosen so that go(0) = l . T h e n / 0 and go 
satisfy (2.1). Let y = 0; we get go(x)2 =fo(x) ; now let x = 0 to show that 
go(y)=go(—y). Hence go a n d / o are even functions. Substituting in 
(2.1), we find that 

(2.2) fo(x + y)fo(x - , ) - fo(xYfo(y)\ 

This is essentially the parallelogram law; it follows without much 
trouble that fo(x+y)/fo(x)fo(y) is bilinear. 

In the actual theorem, substituting specific values for x and y in 
(2.1) is invalid. Instead, we use limit arguments, based on the density 
theorem and Lusin's theorem, to get the result. 

3. Gaussian measures on compact groups. We begin by reducing 
the problem to a special case. L e t / b e the Fourier-Stieltjes transform 
of the Gaussian measure /z; an easy argument shows that ƒ has support 
on a subgroup T0QG* closed under division by 2 and that ƒ is a mul­
tiple of a quadratic character on T0. We may assume t h a t / ( 0 ) = 1. 
Set Go = r 0~. Then there is a Gaussian measure no on Go (which we 
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shall call the condensation of /x) whose Fourier-Stieltjes transform is 
ƒ | T0. I t is easy to obtain either fx or jxo in terms of the other; thus for 
convenience, we shall assume that r 0 = G~. 

Suppose that (JA is a torsion-free group of rank n. (Since x)-*2x is 
an automorphism of G, G~ is a Z[J]-module.) Then we can define a 
Gaussian measure on G as follows: G contains a dense image of Rn, 
and any finite Gaussian measure on Rn therefore defines a Gaussian 
measure on G. Let B be any symmetric complex matrix whose real 
part is positive definite, and let 

1 
dfjLBM = exp((7r^-1^, x))dx. 

(Det B)1'2 

(Here, ( , ) is the usual scalar product, and the sign of B must be 
chosen so that ixB{Rn) = 1.) We call such a measure on G a matrix 
measure. More generally, we call a Gaussian measure M on G matricial 
iff 

(a) /x* is never 0; 
(b) \x is the weak-* limit of Gaussian measures fx whose Fourier-

Stieltjes transforms are concentrated on subgroups H of finite rank 
and whose condensations are matrix measures on H~. 

The opposite extreme from a matricial measure is a large measure. 
We say that the Gaussian measure [x is large iff \f(x)\ = 1 for all 
xÇzG .A more useful characterization is the following 

THEOREM 4. fx is a large Gaussian measure <=>/x is a Gaussian point 
measure concentrated on a finite subgroup of G. 

We can now state the characterization of Gaussian measures on G. 

THEOREM 5. Let IJL be a Gaussian measure on G whose Fourier trans­
form never vanishes. Then there are measures /xi and v, and a subgroup 
Gi, such that: 

(1) /ii is concentrated on G\\as a measure on Gi, /xi is matricial', 
(2) v is a large measure-, 
(3) fii*i>=n. 

Moreover, (1), (2), and (3) uniquely determine fix, v, and G\. 

The proofs of these theorems involve getting restrictions on ƒ in 
terms of ||/A||, then turning around and showing that if ƒ satisfies the 
appropriate restrictions, we can actually construct fx. 

4. The reals. Let jwbea Gaussian measure on Rn. Then supp /x is a 
subspace of Rn; we may therefore assume supp fx = Rn. 
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THEOREM 4.1. There is a symmetric nonsingular complex nXn 
matrix B' such that dfx(x) = exp (TBX, x)dx. (Here, dx is Haar measure.) 
In particular, fx is absolutely continuous. 

The proof amounts to showing that exp( —nxfx) is pt-integrable 
for large enough n. After that, a Fourier transform argument gives 
the rest. 

Arguments similar to those of Theorem 4.1 can be used to find all 
Gaussian measures on RnX C, where C is an arbitrary compact group. 

I would like to thank Professor G. W. Mackey for his guidance 
and for many fruitful conversations. 
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