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We are interested here in isomorphic invariants of the various 
Banach spaces associated with the spaces L°°Gu) for finite measures ju. 
(Throughout, "/*" and uvn denote arbitrary finite measures on pos­
sibly different unspecified measureable spaces.) We classify the 
spaces L°°(M) themselves up to isomorphism (linear homeomorphism) 
in §3, where we also obtain information on the spaces A and A* for 
subspaces A of Ll(jx). In §2, we give a short proof of a result (Corol­
lary 2.2) which simultaneously generalizes the result of Pelczyiiski 
that Ll(jx) is not isomorphic to a conjugate space if fi is nonpurely 
atomic [7], and the result of Gel'fand that Lx[0, l ] is not isomorphic 
to a subspace of a separable conjugate space (c.f. [8]). We also obtain 
there that an injective double conjugate space is either isomorphic 
to /°° or contains an isomorph of /°°(r) for some uncountable set T, if 
it is infinite dimensional. (Henceforth, all Banach spaces considered 
are taken to be infinite dimensional. Also, we recall that a Banach 
space is called injective if every isomorphic imbedding of it in an 
arbitrary Banach space Y is complemented in F.) 

We include brief proofs of some of the results. Full details of the 
work announced here and other related work will appear in [ l l ] . 

1. Preliminary results. M(S) denotes the space of all regular 
bounded scalar-valued Borel measures on 5. (Throughout, "S" de­
notes an arbitrary compact Hausdorff space.) 

LEMMA. Let A be a closed subspace of M(S). Then either there exists 
a positive ixÇiM(S) such that AdL1^) (that is, every member of A is 
absolutely continuous with respect to fx)f or A contains a subspace com-
plemented in M(S) and isomorphic to Z^T) for some uncountable set T. 

It is easily seen that these possibilities are mutually exclusive. (In 
fact it follows from known results that for uncountable I \ ^(T) is not 
isomorphic to a subspace of any WCG Banach space as defined in §2.) 

The lemma is proved by using the Radon-Nikod^m theorem and a 
generalization of an argument of Köthe [5]. A consequence of its 
proof is the 
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COROLLARY. Let Y be an infinite set, X a Banach space, and suppose 
that Co(T) is isomorphic to a subspace of X*. Then lx(T) is isomorphic 
to a complemented subspace of X (and consequently l°°(T) is isomorphic 
to a subspace of X*). 

If r is countable, this result is known and due to Bessaga and 
Pelczynski (Theorem 4 of [2]). 

2. Conjugate Banach spaces isomorphic to complemented sub-
spaces of LICK). The Banach space X is said to satisfy the Dunford 
Pettis property (X satisfies DP) if every weakly compact operator 
from X to an arbitrary Banach space Y maps weak Cauchy sequences 
into norm-Cauchy sequences. X is said to be weakly compactly gener­
ated (WCG) if there is a weakly compact subset of X with linear span 
norm-dense in X. 

THEOREM 2.1. Let the Banach space X satisfy DP. Then if X is iso­
morphic to a subspace of a weakly compactly generated conjugate Banach 
space, every weak Cauchy sequence in X converges in the norm topology 
of X. 

This generalizes a result of Grothendieck (cf. Proposition 1.2 
of [10]). 

PROOF. Let (xn) be a sequence in X with xn—»0 weakly. I t suffices 
to show that xn—>0 in norm. If this does not happen, then by passing 
to a subsequence if necessary, we may assume there is a S > 0 with 
||#n|| >S for all n. Now we may assume that there is a Banach space 
B with XCB*, with B* WCG. Choose bnGB with | |6»||=1 and 
|#n(&n)| > S for all n. Then since J3* is WCG, the unit cell of £** is 
weak* sequentially compact (cf. Corollary 2 of [ l ] ) ; thus there is a 
subsequence (bn.) of the bn's and a &** in J3** with b*(bn.)-^>b**(&*) 
for all b*Ç:B*. Thus (bni) is a weak Cauchy sequence; defining fj(x) 
= x(bnj) for all j and xÇzX, (ƒ,•) is a weak Cauchy sequence in X*. 
Then it follows from a result of Grothendieck (p. 138 of [4]) that 
fj(xnj)—>0, a contradiction. Q.E.D. 

We note that Ll(p) is WCG since L2(JJL) injects densely into L1Qx), 
and it is known that LlÇK) satisfies D P for any measure X. Moreover, 
a complemented subspace of a WCG Banach space (a space satisfying 
DP) is also WCG (satisfies DP) . We thus obtain 

COROLLARY 2.2 Let\ be an arbitrary (possibly infinité) measure, and 
let X be a complemented subspace of LlÇK). Then if X is isomorphic to a 
subspace of a WCG conjugate Banach space, weak Cauchy sequences in 
X are norm-convergent and X is separable (and consequently isometric 
to a complemented subspace of Ll[0, l ] ) . 
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The proof follows immediately from the above observations, Theo­
rem 2.1, and a suitable version of the lemma of §1 for arbitrary 
subspaces A of LXÇK). 

Corollary 2.2 has as a consequence 

THEOREM 2.3. Let B be an infective Banach space which is isomorphic 
to a double conjugate Banach space. Then either B is isomorphic to l°° 
or there exists an uncountable set T with l°°(T) isomorphic to a subspace 
ofB. 

Theorems 2.1 and 2.3 show that if X* is injective and X is isomor­
phic to a subspace of a WCG Banach space, then if X is nonseparable 
or if X contains a sequence converging to zero weakly but not in 
norm, X is not isomorphic to a conjugate Banach space. 

3. Classification of the linear isomorphism types of the space 
L°°(JL). The following result is crucial to our classification theorem, 
and generalizes the following (unpublished) result due jointly to 
W. Arveson and the author: if Ll(p) is nonseparable, then (L°°(JU))* 

is not separable in its weak* topology. 
For a normed linear space F, dim F denotes the smallest cardinal 

number m for which there exists a subset of cardinality m with linear 
span dense in F. 

THEOREM 3.1. Let A be a closed subspace of Lx(v) for some v% and let 
dim A — m. Let Bbea closed subspace of A** such that B is isomorphic 
to a subspace of some WCG Banach space, and suppose that B is weak* 
dense in A**. Then dim B^m. 

PROOF. By a result of Dixmier [3], there exists an S and a n^M(S) 
satisfying the following properties: 

(1) for all nonempty open UC.S, ix(U) =/*(#) > 0 , and U is open; 
(2) C ( S ) = L « ( M ) ; 

(3) Ll(jx) is isometric to Ll(v). 
(S is nothing more than the Stone space of the measure algebra of v; 
in the terminology of [3], S is hyperstonian and p is normal on S.) 
We may assume that A C.Ll{p) and that B is a subspace of A11- such 
that B1-C\C(S)=AK (A** is here identified with A^CC^S)* and 
Ll(p) is regarded as being a subspace of M(S) = C(S)*.) We assume 
that dim B<m and argue to a contradiction. 

By the lemma of §1, there is a positive viSM(S) such that B 
QLl(vi). By the Lebesgue decomposition theorem, there exist positive 
X and p in M(S) with vi=\+p with p absolutely continuous with 
respect to n, and a Borel measureable set E such that fi(E) =\(~E) 
= 0. But then /*(£) = 0 also, by (1). Moreover, vi is absolutely con-
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tinuous with respect to A + M , SO we may assume that BQ&Qi+n). 
Now we may choose a clopen (closed and open) set UC~E such 

that d im-4i> d i m ^ i , where Ai = {xua>: ^ £ 4 } andJ3i= {xub: b^B}. 
Thus since B\CLl(ji\ U) and BIT^AI, we have by (1), (2), and the 
Hahn-Banach theorem that there is an ƒ G C(S) supported on U and 
an aE.A with fafdfi^O, while fbfdfi = 0 for all b£B. Thus ƒ ̂ A-L yet 
fÇzB-1, a contradiction. Q.E.D. 

Our next theorem is the main result of this paragraph. 

THEOREM 3.2. L™(p) is isomorphic to L™(y) if and only if dim Ll(p) 
= dim V(v). 

The "only i P part follows easily from Theorem 3.1; to prove the 
" iP part, we show using Maharam's theorem [ô] that if dim Ll(jx) 
= dim Ll(v), then Lx(v) is isometric to a quotient space of Ll(jx) ; thus 

L™(JJL) and L™(y) are of the same linear dimension, and hence isomor­
phic by a result of Pelczynski [9]. 

REMARK. Letting /xm denote the product measure on the product 
of m copies of [0, l ] (using Lebesgue measure on each factor), we 
thus have that the spaces L™(jxm) form a complete set of isomorphism 
types for the spaces L°°(JJL) for arbitrary /z. Previous to our work, the 
spaces Lp(jx) for 1 Sp< °°, p9^2 had been classified by Joram Linden-
strass as follows: if m = dim Ll(p) and m > N 0 , then if m is not the 
limit of a (denumerable) sequence of smaller cardinals, Lp(p) is iso­
morphic to Lp(jxm) ; if m is such a limit, there are two mutually exclu­
sive alternatives: 

(1) LP(JJL) is isomorphic to Lp(fxm); 
(2) choosing a fixed sequence of cardinals iti, 112, • • • with tu—>m 

and i u < m all k, LpQx) is isomorphic to (LpGuni)©i>(Mn2)© • • • ) £ • 
(If m = fc<o, it is a known result that Lp(jx) is isomorphic either to 
2>[0, l ] or to lp, and these possibilities are mutually exclusive.) 

The next result is considerably stronger than Theorem 3.2. 

THEOREM 3.3. Let A be a closed subspace of Ll(p), and let m = dim A. 
(a) If Bis a Banach space with B * isomorphic to A*, B is isomorphic 

to a subspace of Ll(jim) and dim B = m. If B is isomorphic to a subspace 
of Ll(v) for some v and dim B<m, then there exists no one-to-one 
bounded linear operator from A* to B*. 

(b) Suppose that A* is infective. Then A* is isomorphic to a sub-
space of Z,°°0utn), and A * is not isomorphic to a double conjugate Banach 
space unless m = fc<o, in which case A* is isomorphic to /°°. 

(c) If A * is isomorphic to L™ (v) for some v, then L ^ m ) is isomorphic 
to a quotient space of A. 
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This is proved by applying many of the previous results for parts 
(a) and (b), and the techniques of the proof of Theorem 3.1 for part 
(c). 
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