AN EXCEPTIONAL ARITHMETIC GROUP AND ITS EISENSTEIN SERIES

BY WALTER L. BAILY, JR.1

Communicated by Armand Borel, September 27, 1968

1. Introduction. Let G_R be the simply-connected, real, Lie group of type E_7 which is isogenous to the full group of holomorphic automorphisms of a bounded symmetric domain in \mathbb{C}^{27} . It is the purpose of this note to announce results on a certain arithmetic subgroup Γ of G_R and its automorphic forms; in particular, we have proved that the automorphic forms for Γ given by Eisenstein series have Fourier coefficients which are rational numbers with a certain Euler product expansion. Because the proofs are too long to give here, they will be presented elsewhere.

In this note, all our fields are of characteristic zero; we use C, R, Q, and Z to denote respectively the complex numbers, the real numbers, the rational numbers, and the rational integers. If V is an algebraic group, algebra, or vector space defined over Q, and if k is a field containing Q, denote by V_k the group of k-rational points of V. It is not necessary that the family of all the fields we consider, ordered by inclusion, have a maximal element.

2. Cayley numbers. We denote by \mathbb{C} the ring of Cayley numbers constructed from the standard basis of eight units and multiplication table of [3]; this gives \mathbb{C} a Q-structure, and \mathbb{C}_R is a division algebra. The ring \mathbb{C}_k has an involution $a \rightarrow \bar{a}$, from which we define the trace function $T: a \rightarrow a + \bar{a}$, a bilinear form $B: (a, b) \rightarrow T(a\bar{b})$, and norm $N: a \rightarrow a\bar{a}$. We identify k with the set of a in \mathbb{C}_k such that $a = \bar{a}$.

Coxeter [3] has constructed a subring of \mathfrak{C}_R , which we denote by \mathfrak{o} , which is a lattice, contained in \mathfrak{C}_Q , of the real vector space \mathfrak{C}_R , such that $\mathfrak{o} \cap R = \mathbb{Z}$, and which has the further important properties: (1) \mathfrak{o} is self-dual with respect to $B(\ ,\)$; (2) if $a \in \mathfrak{o}$, then T(a) and N(a) are integers; (3) \mathfrak{o} is maximal with respect to the preceding properties; and (4) if β_1, \cdots, β_8 is a basis of \mathfrak{o} and if a_1, \cdots, a_8 are arbitrary elements of \mathbb{Z} , then there exists $a \in \mathfrak{o}$ such that $B(\beta_i, a) = a_i, i = 1, \cdots, 8$. We then have the

¹ The author wishes to acknowledge support for research on the subject matter of this note from NSF grants GP 3903 and GP 6654, as well as from a senior post-doctoral NSF fellowship in the academic year 1965–1966.

LEMMA 1. Let $\mathfrak{o}_1 = \{a \in \mathfrak{o} \mid N(a) = 1\}$. If $x \in \mathfrak{C}_R$ satisfies $|B(x, c)| \leq 1$ for all $c \in \mathfrak{o}_1$, then $N(x) \leq \frac{1}{2}$.

The above facts about \mathfrak{C}_R and \mathfrak{o} are basic in proving the arithmetic part of our results.

3. Exceptional Jordan algebras. Let \Im_k be the set of 3 by 3 matrices $X = (x_{ij})$ over \mathfrak{C}_k such that $x_{ij} = \bar{x}_{ji}$; in particular, $\xi_i = x_{ii} \in k$. This becomes a Jordan algebra, supplied with the product $X \circ Y = \frac{1}{2}(XY + YX)$, where XY is the ordinary matrix product. One defines $\operatorname{tr}(X) = \sum_i x_{ii}$, an inner product $(\ ,\)$ by $(X, Y) = \operatorname{tr}(X \circ Y)$, and a symmetric trilinear form $(\ ,\ ,\)$ such that the associated cubic form det X has the formal appearance of a determinant [6]. Let X be the bilinear mapping of $\Im_k X \Im_k$ into \Im_k defined by $(X \times Y, Z) = 3(X, Y, Z)$.

Let K be the cone of squares of elements of \mathfrak{J}_R , and let K^+ be its interior; if $X \in K^+$, then det $X \neq 0$. We define $\mathfrak{J}_0 = \{X \in \mathfrak{J}_R \mid X = (x_{ij}), x_{ij} \in 0 \text{ (in particular, } \xi_i \in \mathbb{Z})\}$. Then \mathfrak{J}_0 is a self-dual lattice with respect to (,).

4. k-forms of E_6 and E_7 . Let $g_k = \{g \in GL(\mathfrak{J}_k) | \det(gX) \equiv \det X\}$ and let $g_0 = \{g \in g_0 | g\mathfrak{J}_0 = \mathfrak{J}_0\}$. One defines [7] an automorphism $g \to g^*$ of g_k by $(gX, g^*Y) \equiv (X, Y)$. If $g \in g_k$, then $g(X \times Y) = (g^*X) \times (g^*Y)$; moreover, g_0 is stable under that automorphism. Using these facts, Lemma 1, and [6, Theorem 12], one may prove

PROPOSITION 1. The group \mathfrak{g}_R is connected and $\mathfrak{g}_{\mathfrak{o}}$ is a maximal discrete subgroup of \mathfrak{g}_R . If two **Q**-parabolic subgroups of \mathfrak{g}_R are conjugate, then they are conjugate by an element of $\mathfrak{g}_{\mathfrak{o}}$.

Let X and X' be two copies of \mathfrak{J}_k , and let Ξ and Ξ' be two copies of k. Define W_k to be the direct sum of vector spaces, $X \oplus \Xi \oplus X' \oplus \Xi'$. If $w \in W_k$, we may write w in terms of its components in the direct summands as $w = (X, \xi, X', \xi')$. Define [4] a quartic form J on W_k by $J(w) = (X \times X, X' \times X') - \xi$ det $X - \xi'$ det $X' - \frac{1}{4}((X, X') - \xi \xi')^2$ and a skew-symmetric bilinear form $\{ , \}$ on $W_k \times W_k$ by

$$\{w_1, w_2\} = (X_1, X_2') - (X_2, X_1') + \xi_1 \xi_2' - \xi_2 \xi_1',$$

where $w_i = (X_i, \xi_i, X_i', \xi_i')$. Define G_k to be the group of all linear transformations of W_k leaving J and $\{ , \}$ invariant. Let W_0 be the lattice of all $w \in W_Q$ such that $X, X' \in \mathfrak{F}_0$, and $\xi, \xi' \in \mathbb{Z}$, and define

$$\Gamma = G_{o} = \{g \epsilon G_{Q} | gW_{o} = W_{o}\}.$$

PROPOSITION 2. The group G_R is connected and Γ is a maximal dis-

screte subgroup of G_R . If two **Q**-parabolic subgroups of G_R are conjugate, then they are conjugate by an element of Γ .

5. The symmetric domain. It is known [4] that G_R is that real, connected, and simply-connected form of E_7 which is isogenous to the holomorphic automorphism group of a noncompact symmetric, hermitian space D of 27 dimensions. The space D, which is complex analytically isomorphic to a bounded domain in C^{27} , may also be identified with the tube domain [5]

$$\mathfrak{I} = \{ Z = X + iY \in \mathbb{C}^{27} | Y \in \mathbb{K}^+ \},\,$$

where K^+ is defined as in §3. The group G_R contains a subgroup P^+ which, via the action of G_R on 3, is isomorphic to the group of all translations: $Z \rightarrow Z + A$, $A \in \mathfrak{J}_R$; it also contains the inversion $\iota: Z \rightarrow -Z^{-1}$ (Jordan algebra inverse); and ι and the group P^+ generate G_R . Moreover, G_R contains a subgroup isomorphic to \mathfrak{g}_R ; if $g \in \mathfrak{g}_R$, then the action of g on 3 is the complexification of its action on \mathfrak{J}_R . There is a unique parabolic subgroup \mathfrak{G} of G_R containing \mathfrak{g}_R and P^+ . Let $P_0^+ = P^+ \cap \Gamma$, identify \mathfrak{g}_0 with $\mathfrak{g}_R \cap \Gamma$, and let $\Gamma_0 = \Gamma \cap \mathfrak{G}$.

6. Automorphic forms. If $g \in G_R$, denote by j(Z, g) the functional (jacobian) determinant of g at Z (we view g as acting on the right). We remark that $j(Z, \iota) = (\det Z)^{-18}$, as follows from an easy calculation.

A holomorphic function f on 3 which satisfies the identity

(1)
$$j(Z, g)^m f(Z \cdot g) = f(Z), g \in \Gamma, Z \in S,$$

where m is an even integer ≥ 0 , is called an automorphic form of weight m for Γ . The relation (1) implies that f is invariant under Γ_0 , and in particular f(Z+A)=f(Z) for all $A\in \mathfrak{F}_0$. Hence f has a Fourier expansion

$$f(Z) = \sum_{T} a(T) \epsilon((T, Z)),$$

where the sum is over $T \in \mathfrak{F}_0$ and $\epsilon(x) = e^{2\pi i x}$; by well-known principles [2, §10.14], one may even assert that a(T) = 0 if $T \notin K$.

7. Eisenstein series. If m is a positive even integer, we define

$$E_m(Z) = \sum_{\gamma \in \Gamma/\Gamma_0} j(Z, \gamma)^m, \quad Z \in \mathcal{I}.$$

This series converges uniformly on compact subsets of 3 [2, §7.2] and is an automorphic form of weight m for Γ . Hence it has a Fourier expansion

(2)
$$E_m(Z) = \sum_{T \in \mathfrak{I}_{0 \cap K}} a_m(T) \epsilon((T, Z)).$$

One may prove, using in part some ideas of Siegel [8, §5], that the

automorphic forms E_m generate the field of automorphic functions for Γ . It follows without great difficulty that if k is a field containing all the Fourier coefficients $a_m(T)$ for all m and T, then k is a field of definition for the Satake compactification [2, pp. 482–485] of $3/\Gamma$, viewed as a projective variety.

8. The Fourier coefficients. One may prove

THEOREM. All of the Fourier coefficients $a_m(T)$ are rational numbers.

We indicate very briefly how this may be proved for the case $T \in K^+$ (so that det $T \neq 0$). The general case is similar.

Denote by Q_p the *p*-adic completion of Q, and by Z_p , the ring of *p*-adic integers, for any rational prime p. Let $\mathfrak{J}_{\mathfrak{d}_p} = \mathfrak{J}_{\mathfrak{d}} \otimes_{\mathbb{Z}} Z_p$, and let $g_{\mathfrak{d}_p}$ be the stabilizer in g_{Q_p} of $\mathfrak{J}_{\mathfrak{d}_p}$.

LEMMA 2. If $u \in \mathfrak{F}_{Q_p}$, then there exists $g \in \mathfrak{G}_{0_p}$ such that $g \cdot u = (u'_{ij})$ satisfies $u'_{ij} = 0$ if $i \neq j$.

(This is true for every rational prime p, including 2.)

DEFINITION. Let $u \in \mathfrak{F}_{Q_p}$. If $g \in \mathfrak{s}_{0_p}$ is as in Lemma 2, let $\kappa_p(u)$ denote the archimedean absolute value of the product of the reduced denominators of the nonzero elements of $g \cdot u$ (so that $\kappa_p(u)$ is a nonnegative power of p). Let $\kappa(u) = \prod_p \kappa_p(u)$, where the product is over all rational primes.

Using the Poisson summation formula, one may prove, as in [8, \S 7], that if $Z \in \mathfrak{I}$, then for any even positive m,

(3)
$$\sum_{\lambda \in \mathfrak{F}_0} \det (Z + \lambda)^{-18m} = \Delta(m) \cdot \sum_{T \in \mathfrak{F}_0} \mathfrak{T}_0 \cap K^+ \det T^{18m-9} \epsilon((T, Z)),$$
 where

$$\Delta(m) = 2^{54m} \cdot \pi^{54m-12} \cdot \prod_{n=0}^{2} \gamma(m-4n)^{-1},$$

 γ being the gamma function. Using (3) to transform the series for E_m , one obtains, analogously to [8, §7],

(4)
$$a_m(T) = \Delta(m) \cdot \det T^{18m-9} \cdot \sum_{u \in \mathfrak{I}_Q \bmod \mathfrak{I}_0} \epsilon((T, u)) \kappa(u)^{-18m},$$

and the sum on the right is equal to $\prod_{p} S_{p}$, with

(5)
$$S_p = \sum_{u \in \mathfrak{I}_{Q_p} \bmod \mathfrak{I}_{\mathfrak{d}_p}} \epsilon_p((T, u)) \kappa_p(u)^{-18m},$$

where ϵ_p is a character on Q_p/Z_p which is not trivial on $p^{-1}Z_p$. Then, using a generalization of Hensel's lemma and some related ideas [1], one sees that for each p, the expression defining S_p is a sum of terms,

each of which is itself a (finite) sum over an orbit of g_{o_p} in \S_{Q_p} modulo \S_{o_p} ; those terms are zero except for a finite number of orbits of \S_{o_p} , and for almost all p, one need only consider the sum over u such that $pu \in \S_{o_p}$. From the first fact, one sees easily that each S_p is a rational number, and by the second fact, the calculation of S_p is reduced, for all but a finite number of p, to an enumerative calculation based on results of [7] and on elementary properties of character sums (in a way entirely different from the procedure in [8, §7]). The result is that for all but a finite number of p, we have

(6)
$$S_p = (1 - p^{-18m})(1 - p^{4-18m})(1 - p^{8-18m}).$$

Combining (4), (5), and (6), one obtains the result that $a_m(T)$ is a rational number. As we have said, our method of evaluating the series S_p is quite different from that of [8] for evaluating series analogous to S_p in a classical case. In [8], use is made of Gaussian sums and their relation to the interpretation of S_p as a representation density for quadratic forms. The absence, until now at least, of an analogous explanation in this exceptional case was what forced us to find another way of evaluating S_p . A problem of interest that remains is to find, if possible, an algebraico-geometric interpretation of the Euler factors (6), similar to the classical expression (in other cases) of such factors as representation densities of one quadratic form by another.

REFERENCES

- 1. W. L. Baily, Jr., On Hensel's lemma and exponential sums (to appear).
- 2. W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528.
 - 3. H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561-578.
- 4. H. Freudenthal, Beziehungen der E, und E, zur Oktavenebene. I, Nederl Akad. Wetensch, Proc. Ser. A. 57 (1954), 218-230.
- 5. U. Hirzebruch, Über Jordan-Algebren und beschränkte symmetrische Gebiete, Math. Z. 94 (1966), 387-390.
- 6. N. Jacobson, Some groups of transformations defined by Jordan algebras. III, J. Reine Angew. Math. 207 (1961), 61-85.
- 7. J. G. M. Mars, Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France 94 (1966), 97-140.
- 8. C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116 (1939), 617-657.

University of Chicago, Chicago, Illinois 60637