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1. Introduction. Let GR be the simply-connected, real, Lie group 
of type Ei which is isogenous to the full group of holomorphic auto­
morphisms of a bounded symmetric domain in C27. I t is the purpose 
of this note to announce results on a certain arithmetic subgroup V of 
GR and its automorphic forms; in particular, we have proved that the 
automorphic forms for T given by Eisenstein series have Fourier 
coefficients which are rational numbers with a certain Euler product 
expansion. Because the proofs are too long to give here, they will be 
presented elsewhere. 

In this note, all our fields are of characteristic zero; we use C, Rt 

0 , and Z to denote respectively the complex numbers, the real num­
bers, the rational numbers, and the rational integers. If F i s an alge­
braic group, algebra, or vector space defined over Q, and if k is a field 
containing Qy denote by Vk the group of ^-rational points of V. I t is 
not necessary that the family of all the fields we consider, ordered by 
inclusion, have a maximal element. 

2. Cayley numbers. We denote by S the ring of Cayley numbers 
constructed from the standard basis of eight units and multiplication 
table of [3 ] ; this gives S a Q-structure, and (S# is a division algebra. 
The ring fë& has an involution a—»â, from which we define the trace 
function T: a—»a + â, a bilinear form B: (a, b)—>T(ah), and norm 
N: a—ïaâ. We identify k with the set of a in (S* such that a = â. 

Coxeter [3] has constructed a subring of (£#, which we denote by 
o, which is a lattice, contained in EQ, of the real vector space fë#, 
such that or\R = Z, and which has the further important properties: 
(1) o is self-dual with respect to B(, ) ; (2) if a Go, then T(a) and N(a) 
axe integers; (3) o is maximal with respect to the preceding proper­
ties; and (4) if ft, • • • , /38 is a basis of o and if alf • • • , a8 are arbitrary 
elements of Z, then there exists a £ o such that B(J3i, a)=ail i = l, 
• • • , 8. We then have the 

1 The author wishes to acknowledge support for research on the subject matter of 
this note from NSF grants GP 3903 and GP 6654, as well as from a senior post-doc­
toral NSF fellowship in the academic year 1965-1966. 
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LEMMA 1. Let 0i = {aGo|iVr(a) = l } . If XE:^R satisfies \B(x, C)\ g l 
for all c£oi , then N(x)^%. 

The above facts about Si? and o are basic in proving the arithmetic 
part of our results. 

3. Exceptional Jordan algebras. Let 3 * be the set of 3 by 3 matrices 
X = {xij) over (§* such that ## = #,»•; in particular, & = # « £ £ . This 
becomes a Jordan algebra, supplied with the product X o Y 
= %(XY+YX), where XY is the ordinary matrix product. One de­
fines tr(X) =^iXih an inner product ( , ) by (X, Y)—tr(Xo F), 
and a symmetric trilinear form ( , , ) such that the associated cubic 
form det X has the formal appearance of a determinant [ó]. Let X 
be the bilinear mapping of 3&X3* into 3& defined by (XXY, Z) 
=3(X, Y, Z). 

Let K be the cone of squares of elements of $R, and let ÜT+ be its 
interior; if Z £ ^ + , then det X5*0. We define 3?0= {^G3f i | X= (*,-;), 
#•/£<> (in particular, £»£Z)} . Then Q0 is a self-dual lattice with 
respect to ( , ) . 

4. Morms of Et and E7. Let **= \g£GL(Sk)\det(gX) = det X} 
and let 40= { g £ ^ | g 3 o = 3 o } . One defines [7] an automorphism 
g-*g* of gk by (gX, g*Y) = (Xt F). If g&hy then g ( X X F ) 
= (g*X) X (g* F) ; moreover, 0O is stable under that automorphism. 

Using these facts, Lemma 1, and [6, Theorem 12], one may prove 

PROPOSITION 1. The group $R is connected and &0 is a maximal dis­
crete subgroup of $R. If two Q-parabolic subgroups of én are conjugate, 
then they are conjugate by an element of g0* 

Let X and X' be two copies of 3*> and let S and E' be two copies of 
k. Define Wk to be the direct sum of vector spaces, X®E®X'®E,'. 
If wÇzWk, we may write w in terms of its components in the direct 
summands as w = (X, £, X', £')• Define [4] a quartic form J on Wk by 
J(w) = (XXX, X'XX') - g det Z - r det X'-\((X, X') -&)* and a 
skew-symmetric bilinear form { , } on WkXWk by 

{wi, w2} = (Xu XÏ) - (X2t X[) + fc £ - £2 & 

where 2£\ = (-X"f-, £t-, .XT/, (•/). Define G* to be the group of all linear 
transformations of Wk leaving / and { , } invariant. Let Wo be 
the lattice of all wEWQ such that X, X'ESi» and £, £ ' £ Z , and define 

r = Go= {g€GQ\gW9 = W,}. 

PROPOSITION 2. The group GR is connected and T is a maximal dis-
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screte subgroup of GR. If two Q-parabolic subgroups of GR are conjugate, 
then they are conjugate by an element ofT. 

5. The symmetric domain. I t is known [4] that GR is tha t real, 
connected, and simply-connected form of E7 which is isogenous to 
the holomorphic automorphism group of a noncompact symmetric, 
hermitian space D of 27 dimensions. The space D, which is complex 
analytically isomorphic to a bounded domain in C27, may also be 
identified with the tube domain [5] 

3 = [z = x + iYEC27\YeK+}, 

where K+ is defined as in §3. The group GR contains a subgroup P+ 

which, via the action of GR on 3, is isomorphic to the group of all 
translations: Z—*Z+A, i 4 £ 3 ^ ; it also contains the inversion 
i\ Z-+—Z"1 (Jordan algebra inverse); and t and the group P+ gener­
ate GR. Moreover, GR contains a subgroup isomorphic to $R\ if 
g&R, then the action of g on 3 is the complexification of its action 
on $R. There is a unique parabolic subgroup (P of GR containing &R 

and P + . Let P+ =P+C\T, identify 0O with éBnT, and let TQ = Vr\(P. 

6. Automorphic forms. If gÇzGR, denote by j(Z, g) the functional 
(jacobian) determinant of g at Z (we view g as acting on the right). 
We remark that j(Z, c) = (det Z)~18, as follows from an easy calcula­
tion. 

A holomorphic function ƒ on 3 which satisfies the identity 

(i) xz, g)>»f(z-g) - /(z), ger, zes, 
where m is an even integer à 0, is called an automorphic form of weight 
m for T. The relation (1) implies that ƒ is invariant under r 0 , and in 
particular f(Z+A) =*f(Z) for all -4£3o- Hence ƒ has a Fourier ex­
pansion 

f(Z) - ZT a(T)e«T, Z)) f 

where the sum is over TG^o a n d e{x) =e2rix; by well-known princi­
ples [2, §10.14], one may even assert that a(T) = 0 if T(£K. 

7. Eisenstein series. If m is a positive even integer, we define 

£m(Z) = Z 7 e r / r j ( Z , 7 ) m , Z £ 3 . 

This series converges uniformly on compact subsetsNof 3 [2, §7.2] 
and is an automorphic form of weight m for V. Hence it has a Fourier 
expansion 

(2) Em(Z) = £ r € V * 0 m ( r ) € ( ( 2 \ Z ) ) . 

One may prove, using in part some ideas of Siegel [8, §5], that the 
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automorphic forms Em generate the field of automorphic functions for 
T. I t follows without great difficulty that if k is a field containing all 
the Fourier coefficients am(T) for all m and T, then k is a field of 
definition for the Satake compactification [2, pp. 482-485] of 3 / I \ 
viewed as a projective variety. 

8. The Fourier coefficients. One may prove 

THEOREM. All of the Fourier coefficients am(T) are rational numbers. 

We indicate very briefly how this may be proved for the case 
TÇzK+ (so that det T^O). The general case is similar. 

Denote by Qp the £-adic completion of 0 , and by ZP1 the ring of 
£-adic integers, for any rational prime p. Let %p—^o®zZPi and let 
$0p be the stabilizer in éçp of 3?0p. 

LEMMA 2. If W £ 3 Q P , then there exists gÇzé0p such that g'U — iuy) 
satisfies u\j — Oifi 7*j. 

(This is true for every rational prime p, including 2.) 
DEFINITION. Let W £ 3 Q P . If g&op is as in Lemma 2, let KP(U) denote 

the archimedean absolute value of the product of the reduced denominators 
of the nonzero elements of g-u (so that KP(U) is a nonnegative power of 
p). Let K(U) = YLP Kp(u), where the product is over all rational primes. 

Using the Poisson summation formula, one may prove, as in [8, 
§7], that if Z £ 3 , then for any even positive m, 

(3) £ x€3o det (Z + X)~18- = A(m) • £ r ^ o ï o H K+ det T™>»-h((T, Z)), 

where 

2 

A(m) = 254"-7T54'^12- Jly(m - 4»)-1, 

y being the gamma function. Using (3) to transform the series for Em, 
one obtains, analogously to [8, §7], 

(4) am(T) = A(m) • det Tl*m~* • £ e((Z\ U))K(u)~l*m
} 

UESQ mod 3f0 

and the sum on the right is equal to J I P Sp, with 

(5) Sp= £ *P((T,u))Kp(ur">», 
ue3Qp mod 30j> 

where ep is a character on Qp/Zp which is not trivial on p~lZp. Then, 
using a generalization of Hensel's lemma and some related ideas [ l ] , 
one sees that for each p, the expression defining Sp is a sum of terms, 
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each of which is itself a (finite) sum over an orbit of $0p in $QP modulo 
3op; those terms are zero except for a finite number of orbits of 3f0p, 
and for almost all p, one need only consider the sum over u such that 
/>w£3op. From the first fact, one sees easily that each Sp is a rational 
number, and by the second fact, the calculation of Sp is reduced, for 
all but a finite number of p, to an enumerative calculation based on 
results of [7] and on elementary properties of character sums (in a 
way entirely different from the procedure in [8, §7]). The result is 
that for all but a finite number of p, we have 

(6) Sp = (1 - p~l*m)(l - />4-18w)(l - p * ~ l * m ) . 

Combining (4), (5), and (6), one obtains the result that am(T) is a 
rational number. As we have said, our method of evaluating the series 
Sp is quite different from that of [8] for evaluating series analogous to 
Sp in a classical case. In [8], use is made of Gaussian sums and their 
relation to the interpretation of Sp as a representation density for 
quadratic forms. The absence, until now at least, of an analogous 
explanation in this exceptional case was what forced us to find an­
other way of evaluating Sp. A problem of interest that remains is to 
find, if possible, an algebraico-geometric interpretation of the Euler 
factors (6), similar to the classical expression (in other cases) of such 
factors as representation densities of one quadratic form by another. 
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