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Let s denote the linear metric space which is the countable infinite 
product of lines. I t is known [ l ] that s is homeomorphic to Hubert 
space k and, in light of [8] and [lO], to all separable infinite-dimen­
sional Fréchet spaces (and therefore, of course, to all such Banach 
spaces), We define a Fréchet manifold or F-manifold to be a separable 
metric space which admits an open cover by sets homeomorphic to 
open subsets of s. Banach manifolds, which may be similarly defined, 
have been studied by a number of authors. From the results cited 
above it follows that all separable metric Banach manifolds modeled 
on separable infinite-dimensional Banach spaces are, in fact, F-
manifolds. Also, clearly, any open subset of an F-manifold is an F~ 
manifold. 

In this paper, we are concerned with homeomorphisms of F-
manifolds onto dense subsets of themselves. The first result of the 
type we consider was due to Klee [ l l ] , who showed that for any 
compact set K in /2, h is homeomorphic to h\K. Recently, there have 
been a number of results [2J, [3], [4], [S], [7], [13], etc., showing 
that for various types of subsets K of certain linear metric spaces X, 
X is homeomorphic to X\K. Bessaga [7] introduced the term "neg­
ligible" for such sets K. In some cases K was assumed compact, in 
others cr-compact (i.e. the countable union of compact sets) and in 
others K was assumed to be the countable union of closed sets of 
infinite deficiency (i.e. of infinite codimension). Indeed several differ­
ent geometric methods [2], [3], [S], [7], [ l l ] have been used to 
establish negligibility in various spaces. The results that «r-compact 
subsets of /2 and of 5 are negligible were used in the proofs [ l ] and [5] 
that k is homeomorphic to s. Questions of negligibility of subsets in 
Fréchet and Banach manifolds have also arisen. Where differentiable 
structures are assumed as for Banach spaces and manifolds and K 
is assumed closed, Bessaga [7], Corson, Eells and Kuiper [p], Kuiper 
and Burghelea [12], Moulis [ l3 j , Renz [15] and West have in­
vestigated conditions under which X and X\K are diffeomorphic, 

1 This research was supported in part under NSF Grant GP 6867. A manuscript 
giving detailed arguments for Theorems I to V is in preparation. 
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or they have used results of this type in other work. However, the 
results being announced in this paper are concerned only with homeo-
morphisms, not with diffeomorphisms. 

In [ó], Henderson, West, and the author introduced the concept 
of strong negligibility and characterized the strongly negligible closed 
subsets of an F-manifold. A subset Koia space X is strongly negligible 
if for any open cover G of X there exists a homeomorphism h of X 
onto X\K such that h is limited by G, i.e., for any pÇ£X there exists 
gÇzG such that both p and h(p) are elements of g. 

A similar concept related to the metric of a space is the concept of 
metric negligibility. A set K in a metric space X is metrically negligible 
in X if for each €>0, there exists a homeomorphism h of X onto 
X\K such that h moves no point more than €. Clearly, in a metric 
space X, strong negligibility of a set K implies metric negligibility 
since we may select an open cover of X of mesh less than €. I t is non-
trivial, but follows from Theorem I below that, in an F-manifold, 
metric negligibility of a set K implies strong negligibility of K. 

Following [4], a closed set K has Property Z in a space X if for 
each nonnull homotopically trivial open set U in X, U\K is nonnull 
and homotopically trivial. (A set U is homotopically trivial if every 
map of an w-sphere Sn, n è 0, into U can be extended to a map into 
U of an (w + l)-ball bounded by 5n.) In a sense, Property Z is "trivial 
homotopy negligibility. " See [9] for a similar point-of-view. 

The following theorem is proved in [ó]. 

THEOREM 0. A closed set K in an F-manifold X is strongly negligible 
iff K has Property Z. 

I t should be noted that every compact set in an F-manifold X has 
Property Z in X, that every closed set of infinite deficiency in s or 
in a separable metric Banach space has Property Z in such space, 
and that every closed set which is a countable union of closed sets 
with Property Z in an F-manifold X has Property Z in X. 

The principal result of this paper is the following theorem. 

THEOREM I. A set K in an F-manifold X is strongly negligible {or 
metrically negligible) in X iff K is a countable union of closed sets with 
Property Z in X. 

Theorem I includes, as special cases or easy corollaries, Theorem 0 
and many or all of the previous results on negligibility in F-manifolds 
X under homeomorphisms of X onto dense subsets of itself. 

The proof of necessity in Theorem I is fairly straightforward. We 
do not outline it here. 
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The proof of sufficiency depends heavily on the canonical compacti-
fication of 5 as the Hubert cube 7°° in which s is regarded as a product 
of open intervals and the Hubert cube is regarded as the product of 
the closures of the open intervals. Thus 700 = JX>o ^ a n d s = IL>o tf 
where for each j > 0 , 7y = [ - 1 , 1 ] and 7,° = ( - l , 1). We let 5(7°°) de­
note 7°°\s. A set KC.I00 is an apparent boundary of 700 if there exists 
a homeomorphism h of J00 onto 700 such that h(K) = 5 (700). 

In [6], a rather general procedure for reducing certain homeomor­
phism problems on .F-manifolds to homeomorphism problems on the 
Hubert cube or on s itself is given. The actual homeomorphism theo­
rems on 700 and 5 that are needed in [ó] can be found in [2], [4], [5]. 
While we use the general procedures of [ó] (with slight modifications) 
to establish sufficiency in Theorem I, we also use the following new 
homeomorphism theorem about 700. 

THEOREM II . Let 7 0 O 7 O ^ ( 7 0 0 ) . Then K is an apparent boundary 
of 700 iff K is a countable union of closed sets with Property Z in 700. 

In effect, Theorem II characterizes those apparent boundaries of 
700 which contain B(I°°). 

The sufficiency statement of Theorem II can be used to prove the 
somewhat stronger Theorem IIA below, which is in a form more 
readily adaptable for application to .F-manifolds. An endslice of 700 

is a set W such that for some i > 0 , W= {(#y)£700|a:1-=l (or — 1)}. 

THEOREM IIA. Let W* be a finite union of endslices in 7°°, let €>0, 
and let K be a countable union of closed sets with Property Z in 700 such 
that KC\W* = 0. Then there exists a homeomorphism h of 7e* onto 700 

such that h\ W*= identity, h(s\K) =s, and h moves no point more than e. 

The "bridge" between Property Z in s and Property Z in 700 is 
given by the statement, proved in [4], that for any closed set K in 5 
with Property Z in 5, CI K in 700 has Property Z in 700. 

OUTLINE OF THE PROOF OF THEOREM II . Since an endslice in I00 

has Property Z in 700, 3(7°°) is a countable union of closed sets with 
Property Z in 700. Hence necessity follows immediately. We shall re­
duce the proof of sufficiency to three elementary but nontrivial theo­
rems whose formulations require some additional definitions. 

A core is a set C=YLJ>O Jj where for each j>0, J, is a closed 
interval contained in 7y. A basic core set M structured on a core 
C= IL>o Jj *s defined as M = {(#j)y>o£s| for all but finitely many 

jf XjÇzJj}. A core set is a subset of 5 which is or-compact and contains 
a basic core set. I t is easy to verify that a basic core set is a core set. 

THEOREM I I I . Every core set is an apparent boundary of I00. 
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THEOREM IV. For any basic core set M there is a homeomorphism g 
of 700 onto I00 such that g(M) = B(I°°), and go gis the identity. 

THEOREM V. For any set KQI™ which is the countable union of closed 
sets with Property Z in I00, there exist a homeomorphism ƒ of I00 onto I00 

and a basic core set M such that f(K)C\M=0, and f (B(Ie0)) = B(I«). 

Theorems III and IV can be proved by a more delicate argument 
than that outlined in [4] for the proof of Theorem 11.1 there, to­
gether with selected apparatus like that found in [2]. Theorem V can 
be proved rather routinely from Lemma 6.1 of [4]. We now give a 
short proof of sufficiency for Theorem II based on Theorems I I I , 
IV, and V. 

PROOF OF SUFFICIENCY FOR THEOREM II . Let K be as in the 

hypothesis. Let ƒ be as in Theorem V, and g be as in Theorem IV. 
Let, by Theorem III , h carry g of(K) onto B(I°°). Then ho go f is 
the desired homeomorphism. 
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