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Our result is slightly more general than 

THEOREM 1. A torsion-free, finitely presented group G, with infinitely 
many ends, can be written as a nontrivial free product G\*G2. 

The condition "finitely presented" can be weakened to: There is a 
finite complex K and a regular covering space K with H1(K) = 0, such 
that G is isomorphic to the group of covering translations of K. 

From this we deduce 

THEOREM 2. If a finitely generated group G has cohomological dimen­
sion ^ 1, then G is free [l ]. 

This is another way of stating the title theorem. Another conse­
quence is 

THEOREM 3. If a finitely generated group G has a free subgroup of 
finite index, and if G is torsion-free, then G is free [3]. 

(The references are to papers where these results have been con­
jectured.) 

We shall indicate briefly how to prove Theorems 1 and 2. Details 
will appear elsewhere. 

We use cohomology with coefficient group Z2. Ordinary cohomology 
is called Hn(X). Cohomology with finite cochains is ITf(X). By Z2G 
we denote the group ring of G with coefficient ring Z2\ modules, pro­
jective modules, etc., are with reference to this ring; if I f is a module, 
M* means Homz2o(M, Z2G). 

To say that a group G has infinitely many ends, means that 
Hl(G; Z2G) is more than Z2. In terms of the regular covering space K, 
on which G acts freely with quotient complex K, where H1(K)~0, 
this means that H}(K) contains more than two elements. 

We suppose that K is a finite simplicial complex with ordered 
vertices; on this and on K we have the standard cup-product of co-
chains defined, denoted by •. 

By a minimal 1-cocycle P we mean a finite 1-cocycle on K, which is 
nonzero in Hl

f(K), and which is, among all such, one involving the 
fewest 1-simplexes. 
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Since H1(E)~0, P cobounds two infinite 0-cochains E and JE*. 

LEMMA 1. E and E* are connected. 

This means, in the case of E, say, that any two O-simplexes in E 
can be joined by a finite chain of 1-simplexes, all of whose end-points 
lie in E. The reason for this is that otherwise P would be a disjoint 
sum of two cocycles, both non-trivial ; one of these would be nonzero 
in H\(K) and smaller than P. 

The group G acts on cocycles and cochains. If E and F are 0-
cochains, then E • F, the cup-product, is their intersection. 

LEMMA 2. If all these cochains are nonzero: 

E'gE, E.gE*, E*.gE, £*.g£* 

then P and gP have some 1-simplex in common. 

For, we use Lemma 1 and the impossibility of writing P as a sum of 
disjoint cocycles to show that P9gP 5^0. If the simplicial cup product 
of two simplicial 1-cocycles is nonzero, they actually intersect. 

LEMMA 3. One, at least, of the 0-cochains in Lemma 2 is finite. 

For, one of them has coboundary involving fewer 1-simplexes than 
P. 

LEMMA 4. If g has infinite order, and if P and gP represent the same 
element in H\(K), then H)(K) = Z2; i.e., G has two ends. 

Roughly speaking, K is made up of a doubly infinite telescope 
whose sections are gnF, where F is a finite 0-cochain with coboundary 
P-gP. 

LEMMA 5. If G has infinitely many ends and is torsion-free, and 
l ^gGG, then exactly one of the following is finite: E*gE, E9gE*, 
E**gE,E**gE*. 

For, by Lemma 3, at least one is finite. If two were finite, then P or 
P—gP or gP would represent 0 in Hl

f{K), contradicting Lemma 4. 
Thus, G— {1} splits into four sets, denoted respectively 

AA, AA*, A*A, A*A*. 

Formally, let X, Y, Z stand for A or A*, and (A*)* = A. 

LEMMA 6. (a) ( I F ) - ^ YXt 

(b) XY- Y*ZCXZ. 
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(c) For every g (EG there is an upper bound to the numbers n,for which 
there are X0, Xi, • • , Xn, and gtEXt-_iX*, such that g = gig2 • • • gn* 

(d) None of the sets X Y is empty. 

The proof of this is mostly computational. 
An irreducible element gEiXY is one that cannot be written as gig2 

for giEXZ,g%eZ*Y. 
Let A denote {1} together with all irreducible elements of A A. Let 

B denote {1} together with all irreducible elements of A *A *. These 
are subgroups of G. 

LEMMA 7. (a) If there is no irreducible element of AA*, then G is the 
free product of A and B. 

(b) If there is an irreducible element y&AA*, then G is the free 
product of A and the infinite cyclic group generated by y. 

This is a combinatorial consequence of Lemma 6. It implies Theo­
rem 1. 

As for Theorem 2, it is not hard to prove that such a G can be repre­
sented as the group of covering translations of S over a finite complex 
K, with H1(E)=0. Also, such a G is torsion-free. 

LEMMA 8. A torsion-free group with two ends is infinite cyclic. 

This is a theorem of C. T. C. Wall [4, Lemma 4.1]. Using this and 
Grushko's Theorem [2], we can prove Theorem 2 by induction on the 
number of generators of G, using Theorem 1 to split G into a free 
product, each factor of which has fewer generators. And so we need to 
prove: 

LEMMA 9. If G is a nontrivial, finitely generated group of cohomologi-
cal dimension 1, then Hl(G; Z2G)9é0. 

Since G is 1-dimensional and finitely generated, the kernel M of the 
augmentation ZiG-^Z* is a finitely generated projective module. The 
cohomology of G with coefficient group Z2G now fits into an exact 
sequence: 

0-»ff°(G; Z2G)^(Z2G)*-^(ilf)*-^iî1(G; Z2G)-*0 

Since G is finite dimensional, it has no elements of finite order. Hence 
G is infinite; this implies H°(G; Z2G) =0. If, additionally, HX(G; Z2G) 
were 0, the exact sequence would say that (ZiG^—^M* is an iso­
morphism. Since these are finitely generated projective modules, the 
original map M-*Z2G would have to be an isomorphism, contrary to 
the fact that it has cokernel Z2. 
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This derivation of Theorem 2 from Theorem 1 was shown to us by 
C. T. C. Wall. 
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1. Limits of convolution powers and stable measures. Let M(R) 
denote the Banach algebra of all complex-valued regular finite mea­
sures defined on the Borel sets of the real Une R, where multiplication 
is defined by convolution, and 

y = suP E \üRd\9 

the supremum being taken over all finite collections of pairwise dis­
joint sets Ri whose union is i?. Let B(R) be the set of all Fourier trans­
forms of measures in M(R). 

In [l], we characterized all possible limits 

lim (P(t/Bn))
n exp (UAn) « #(/) for all t ^ 0, 

n-+oo 

where An(~R, Bn>0, P> fl^B(R). This is a generalization of an old 
problem in probability theory (see e.g. [4]). One can show that a 
measure /x appears as a limit if and only if it is stable, i.e. has the fol­
lowing property: For all a>0 , b>0 there exist c>0 and 7GJ? such 
that 

(1) K*t)p,(bf) = fi(ct) exp (iyt) for all / G R. 

1 Sponsored by the Mathematics Research Center, United States Army, Madi­
son, Wisconsin, under Contract No. DA-31-124-ARO-D-462. 


