GROUPS OF DIMENSION 1 ARE LOCALLY FREE

BY JOHN STALLINGS

Communicated by S. Smale, November 15, 1967

Our result is slightly more general than

THEOREM 1. A torsion-free, finitely presented group G, with infinitely many ends, can be written as a nontrivial free product G_1*G_2 .

The condition "finitely presented" can be weakened to: There is a finite complex K and a regular covering space \tilde{K} with $H^1(\tilde{K}) = 0$, such that G is isomorphic to the group of covering translations of \tilde{K} .

From this we deduce

THEOREM 2. If a finitely generated group G has cohomological dimension ≤ 1 , then G is free [1].

This is another way of stating the title theorem. Another consequence is

THEOREM 3. If a finitely generated group G has a free subgroup of finite index, and if G is torsion-free, then G is free [3].

(The references are to papers where these results have been conjectured.)

We shall indicate briefly how to prove Theorems 1 and 2. Details will appear elsewhere.

We use cohomology with coefficient group \mathbb{Z}_2 . Ordinary cohomology is called $H^n(X)$. Cohomology with finite cochains is $H^n_f(X)$. By \mathbb{Z}_2G we denote the group ring of G with coefficient ring \mathbb{Z}_2 ; modules, projective modules, etc., are with reference to this ring; if M is a module, M^* means $\text{Hom}_{\mathbb{Z}_2G}(M, \mathbb{Z}_2G)$.

To say that a group G has infinitely many ends, means that $H^1(G; \mathbf{Z}_2G)$ is more than \mathbf{Z}_2 . In terms of the regular covering space \tilde{K} , on which G acts freely with quotient complex K, where $H^1(\tilde{K}) = 0$, this means that $H^1_I(\tilde{K})$ contains more than two elements.

We suppose that K is a finite simplicial complex with ordered vertices; on this and on \tilde{K} we have the standard cup-product of cochains defined, denoted by •.

By a minimal 1-cocycle P we mean a finite 1-cocycle on \tilde{K} , which is nonzero in $H^1_f(\tilde{K})$, and which is, among all such, one involving the fewest 1-simplexes.

Since $H^1(\tilde{K}) = 0$, P cobounds two infinite 0-cochains E and E*.

LEMMA 1. E and E* are connected.

This means, in the case of E, say, that any two 0-simplexes in E can be joined by a finite chain of 1-simplexes, all of whose end-points lie in E. The reason for this is that otherwise P would be a disjoint sum of two cocycles, both non-trivial; one of these would be nonzero in $H^1_{\Gamma}(K)$ and smaller than P.

The group G acts on cocycles and cochains. If E and F are 0-cochains, then $E \cdot F$, the cup-product, is their intersection.

LEMMA 2. If all these cochains are nonzero:

$$E \cdot gE$$
, $E \cdot gE^*$, $E^* \cdot gE$, $E^* \cdot gE^*$

then P and gP have some 1-simplex in common.

For, we use Lemma 1 and the impossibility of writing P as a sum of disjoint cocycles to show that $P \cdot gP \neq 0$. If the simplicial cup product of two simplicial 1-cocycles is nonzero, they actually intersect.

LEMMA 3. One, at least, of the 0-cochains in Lemma 2 is finite.

For, one of them has coboundary involving fewer 1-simplexes than P.

LEMMA 4. If g has infinite order, and if P and gP represent the same element in $H^1_f(\tilde{K})$, then $H^1_f(\tilde{K}) = \mathbb{Z}_2$; i.e., G has two ends.

Roughly speaking, \tilde{K} is made up of a doubly infinite telescope whose sections are $g^n F$, where F is a finite 0-cochain with coboundary P-gP.

LEMMA 5. If G has infinitely many ends and is torsion-free, and $1 \neq g \in G$, then exactly one of the following is finite: $E \cdot gE$, $E \cdot gE$, $E \cdot gE$.

For, by Lemma 3, at least one is finite. If two were finite, then P or P-gP or gP would represent 0 in $H^1_{\mathcal{F}}(\widetilde{K})$, contradicting Lemma 4. Thus, $G-\{1\}$ splits into four sets, denoted respectively

Formally, let X, Y, Z stand for A or A^* , and $(A^*)^* = A$.

LEMMA 6. (a)
$$(XY)^{-1} = YX$$
.
(b) $XY \cdot Y * Z \subset XZ$.

- (c) For every $g \in G$ there is an upper bound to the numbers n, for which there are X_0, X_1, \dots, X_n , and $g_i \in X_{i-1}X_i^*$, such that $g = g_1g_2 \dots g_n$.
 - (d) None of the sets XY is empty.

The proof of this is mostly computational.

An irreducible element $g \in XY$ is one that cannot be written as g_1g_2 for $g_1 \in XZ$, $g_2 \in Z^*Y$.

Let A denote $\{1\}$ together with all irreducible elements of AA. Let B denote $\{1\}$ together with all irreducible elements of A*A*. These are subgroups of G.

LEMMA 7. (a) If there is no irreducible element of AA^* , then G is the free product of A and B.

(b) If there is an irreducible element $\gamma \in AA^*$, then G is the free product of A and the infinite cyclic group generated by γ .

This is a combinatorial consequence of Lemma 6. It implies Theorem 1.

As for Theorem 2, it is not hard to prove that such a G can be represented as the group of covering translations of \widetilde{K} over a finite complex K, with $H^1(\widetilde{K}) = 0$. Also, such a G is torsion-free.

LEMMA 8. A torsion-free group with two ends is infinite cyclic.

This is a theorem of C. T. C. Wall [4, Lemma 4.1]. Using this and Grushko's Theorem [2], we can prove Theorem 2 by induction on the number of generators of G, using Theorem 1 to split G into a free product, each factor of which has fewer generators. And so we need to prove:

LEMMA 9. If G is a nontrivial, finitely generated group of cohomological dimension 1, then $H^1(G; \mathbb{Z}_2G) \neq 0$.

Since G is 1-dimensional and finitely generated, the kernel M of the augmentation $\mathbb{Z}_2G \rightarrow \mathbb{Z}_2$ is a finitely generated projective module. The cohomology of G with coefficient group \mathbb{Z}_2G now fits into an exact sequence:

$$0 \rightarrow H^0(G; \mathbf{Z}_2G) \rightarrow (\mathbf{Z}_2G)^{\bigstar} \rightarrow (M)^{\bigstar} \rightarrow H^1(G; \mathbf{Z}_2G) \rightarrow 0$$

Since G is finite dimensional, it has no elements of finite order. Hence G is infinite; this implies $H^0(G; \mathbf{Z}_2G) = 0$. If, additionally, $H^1(G; \mathbf{Z}_2G)$ were 0, the exact sequence would say that $(\mathbf{Z}_2G)^{\bigstar} \to M^{\bigstar}$ is an isomorphism. Since these are finitely generated projective modules, the original map $M \to \mathbf{Z}_2G$ would have to be an isomorphism, contrary to the fact that it has cokernel \mathbf{Z}_2 .

This derivation of Theorem 2 from Theorem 1 was shown to us by C. T. C. Wall.

REFERENCES

- 1. S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. 65 (1957), 517-518.
- 2. A. G. Kurosh, The theory of groups, Transl. by K. A. Hirsch, Chelsea, New York, 1956.
- 3. J.-P. Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413-420.
 - 4. C. T. C. Wall, Poincaré complexes. I, Ann. of Math. 86 (1967), 213-245.

University of California, Berkeley

ON THE NORM OF STABLE MEASURES¹

BY LUDWIG ARNOLD AND JOHANNES MICHALICEK

Communicated by R. Creighton Buck, October 12, 1967

1. Limits of convolution powers and stable measures. Let M(R) denote the Banach algebra of all complex-valued regular finite measures defined on the Borel sets of the real line R, where multiplication is defined by convolution, and

$$||\mu|| = \sup \sum |\mu(R_i)|,$$

the supremum being taken over all finite collections of pairwise disjoint sets R_i whose union is R. Let B(R) be the set of all Fourier transforms of measures in M(R).

In [1], we characterized all possible limits

$$\lim_{n\to\infty} (\hat{p}(t/B_n))^n \exp(itA_n) = \hat{p}(t) \text{ for all } t\neq 0,$$

where $A_n \in R$, $B_n > 0$, \emptyset , $\widehat{\mu} \in B(R)$. This is a generalization of an old problem in probability theory (see e.g. [4]). One can show that a measure μ appears as a limit if and only if it is *stable*, i.e. has the following property: For all a > 0, b > 0 there exist c > 0 and $\gamma \in R$ such that

(1)
$$\hat{\mu}(at)\hat{\mu}(bt) = \hat{\mu}(ct) \exp(i\gamma t)$$
 for all $t \in R$.

¹ Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.