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Recently there have appeared a number of results on global solu­
tions of the Cauchy problem for hyperbolic systems of quasi-linear 
equations [2], [3], [4], [5]. These solutions are in general discontinu­
ous. In certain cases, however, such as the interaction of two rarefac­
tion waves in gas dynamics, it is known that the Cauchy problem has 
a global continuous solution [l, pp. 191-197], In this announcement 
we outline a proof that a global continuous solution exists and is 
unique for a two-dimensional system provided the Riemann invari­
ants associated with the initial data satisfy certain monotonicity and 
continuity conditions. 

Let X+(r, s)t \~~(r, s) be C1 real-valued functions on a domain 
# C ^ 2 , with 

(1) X+(r, s) > X~(r, s), d\+(r, s)/dr > 0, dX~(r, s)/ds > 0 

for (r, s)££>. Consider the two-dimensional system of quasi-linear 
equations in Riemann invariant form 

(2) rt + X+(r, s)rx = 0, st + X~(r, s)sx « 0 

where r(t, x) and s(t, x) are real-valued functions of two scalar vari­
ables. We seek a solution of the Cauchy problem in the halfplane 
{(t, x )£ i£ 2 : t*t0} with initial conditions 

(3) r(0, x) = r°(x), s(0, x) = s°(x), - oo < x < + <*>. 

Let GT={(t, x)ER2:0^t<T} for 0 < r g + oo. A pair of Lipschitz 
continuous functions (r(t, x), s(t, x))f (/, #)GGr, is called a Lipschitz 
continuous solution of the Cauchy problem (2), (3) if r(t, x) is con­
stant on the integral curves 

(4) x'(t) = X+(r(f, x), s(t, *)), 

s(t, x) is constant on the integral curves 

(5) *'(/) = \-(r(t, x), s(t, *)), 

1 These results are part of the author's Ph.D. thesis written under Joel A. Smoller 
at the University of Michigan. 
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and r(0, x), s(0, x) satisfy the initial conditions (3). The pair (r(t, x), 
s(t, x)) is called a global Lipschitz continuous solution of (2), (3) if the 
functions are defined and Lipschitz continuous on G^ 

THEOREM 1. If r°(x), s°(x), — oo <x< + oo, are bounded, Lipschitz 
continuous, and nondecteasing, satisfying 

(6) [ r 0 ( - « 0 , r 0 ( + « 0 ] X k ° ( - « 0 , sK+co)] C D, 

then the Cauchy problem (2), (3) with initial functions r°(x), s°(x), 
— oo <x< + oo, has a global Lipschitz continuous solution which takes 
its values in the rectangle (6). 

OUTLINE OF PROOF FOR THEOREM 1. For each finite subset A of R\ 
we construct an approximate solution (r(t, x; A), s(tf x; A)), (t, x) 
G Ge», with the property that r(tf x; A) is constant on curves of the 
form (4) and s(t, x; A) is constant on a finite number of curves of the 
form (5). Using condition (1) and the assumed properties of the initial 
functions, we show that r(t, x; A) is Lipschitz continuous in G* with 
Lipschitz constant independent of /, xt and A. If {Bn: n~ 1, 2, • • • } 
is an increasing sequence of finite sets whose union is dense in R\, then 
by the Ascoli theorem the sequence of functions r(t, x; Bn) contains a 
subsequence converging to a Lipschitz continuous function r(tt x). 
Having this function, we construct s(t, x), (t, x)ÇzG(X>, so that the pair 
(r(t, x), s(tf x)), (t, x)E:Go01 is a global Lipschitz continuous solution 
of (2), (3). 

We have also obtained the following result regarding the depen­
dence of Lipschitz continuous solutions on initial data. 

THEOREM 2. Let r°(x), s°(x), — oo < # < + oo, i = l, 2, be bounded 
real-valued functions with 

d ^ u(x) S bi, Ci ^ s°i(x) ̂  d{, — oo < x < + oo, 

and suppose that [a»«, bi] X [ci, di]C.D, i = l, 2. Let 

m = sup ( | r\(%) — rl(x) \ + \ s°x(x) — s\(x) | ). 
—oo<a<-f-oo 

If (ri(t> x)y si(t> x))> (ft X)&GT, is a Lipschitz continuous solution of the 
Cauchy problem f or the equations (2) with initial vector (r?(#), sQx)), 
— oo < # < + oo,i = l , 2 , then there is a constant L(T) such that 

sup ( | ri(t, x) — r2(t, x) \ + \ si(t, x) — s2(/, x) \ ) ^ mL(T). 
(t,x)eaT 
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I t follows easily from this that Lipschitz continuous solutions are 
unique. 

Theorems 1 and 2, together with results of Lax [3], can be applied 
to the conservation law 

(7) ut + (p(v))x = 0, vt - ux = 0 

to yield the following corollaries. 

COROLLARY 1. Let p(v)E:C2 on the halfline (v>0) with p'(v)<0, 
p"(v)>0 and ƒ* [-~p'(v)]ll2dv = oo. If the functions u°(x), v°(x), 
— oo <x< + oo, are bounded and Lipschitz continuous, with v°(x) posi­
tive and bounded away from 0, and satisfy 

I [-p'(v)y'2dv\ iorx2>xh 

then the Cauchy problem f or the equations (7) with initial vector (u°(x), 
v°(x)) has a unique Lipschitz continuous weak solution. 

COROLLARY 2. Let p(v) be as in Corollary 1, and let u°(x), v°(x), 
— <x> <x < + &, be bounded and piecewise constant real-valued functions, 
with v°(x) positive and bounded away from 0, which satisfy (8). If the set 
A of discontinuities of the vector f unction (u°(x), v°(x)) has the property 

inf{ | a - b | : a, b G A, a ^ b] > 0, 

then the Cauchy problem for the system (7) with initial vector (u°(x), 
v°(x)) has a solution which is Lipschitz continuous in each of the sets 
{(t, x)EG00: t>to}, for / 0 > 0 . 

Corollary 2 provides a solution for the interaction of simple waves 
centered on the line (/ = 0). 
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