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A uniquely orderable field F and a polynomial ƒ (X) over F are con­
structed in such a manner that ƒ(X), though positive at every point 
of F, is not a sum of squares of elements of the rational function 
field F(X). 

Artin's solution of Hubert 's problem asserts [2] that if a rational 
function assumes no negative values then it is a sum of squares, pro­
vided the coefficient field has exactly one order and that order is 
Archimedean; in Hilbert's formulation the coefficients are rational 
numbers. For definitions and a more detailed proof of Artin's theorem 
see Jacobson [6, Chapter VI] . Our example shows that the Archime­
dean hypothesis in Artin's theorem is not superfluous, contrary to 
Corollary 2, p. 278 of [8]. 

Let Q be the field of all rational numbers, let / be an indeterminate, 
let Q(t) be ordered so that t is positive and infinitesimal and let K be a 
real closure of Q(t). Let F be the field over Q(t) consisting of all ele­
ments of K obtainable from Q(t) by means of a finite sequence of 
rational operations and square root extractions, exactly as in rulçr 
and compass considerations. Since every positive element of F has 
its square roots in F, F has exactly one order. Set [l, p. 115] 

f(x) = (x* - ty -1\ 
where X is a variable. Then f (X) is not a sum of squares in F(X) (nor 
even in K(X)), s ince/( l) and f(tllz) have opposite signs. Now we shall 
show that ƒ (X) is positive as a function on F. I t has long been known 
[4], [7] that the ring B of all finite elements of K (u infinite \i\u\ <n 
for some integer n) is a valuation ring in K. The induced valuation v is 
a measure of order of magnitude, the significance of v(a) <v(b) being 
that ar^b is infinitesimal. Denoting by G the value group of K written 
in additive notation, and observing that G is a torsionfree abelian 
group, we shall show that G may be identified with (the additive 
group of) Q, with v{t) = 1. The ramification relation ef ^*n [3, p. 122], 
together with the algebraic character of K over Q(t), implies that the 
rank of G is one. Hence [5, §42] G can be embedded in Q so that v{t) 
maps onto 1; moreover K contains nt\\ roots of t for all n\ so the 
embedding is onto. In other words G can be identified, and now will 

540 

file:///i/u/


ARTIN'S SOLUTION OF HILBERT'S 17TH PROBLEM 541 

be, with Q. I t is altogether easy to see that if f(y) is negative then 
v(y) = 1/3. But if z is any member of F then z belongs to a field Hr 

at the top of a finite tower 

0(0 = #o C ffi C • • • C Hr 

of subfields of K, where each step is quadratic. An application of the 
ramification relation with n = 2 shows that the value group of Hi has 
index one or two in the value group of Hi+\. Consequently v(z) has 
the form m/2k for some integers m and k. Since m/2h cannot be \, 
ƒ(2) is positive and all is proved. 
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