SEMI-IDEMPOTENT MEASURES ON ABELIAN GROUPS¹ ## BY IRVING KESSLER ## Communicated by E. Hewitt, September 26, 1966 Let M(G) denote the set of complex valued regular Borel measures on a compact abelian group G. We assume that Γ , the dual group of G, is a totally ordered group. Let F(G) denote the set of all $\mu \in M(G)$ such that the Fourier transform $\hat{\mu}$ of μ is an integer valued function. A measure μ is idempotent if $\hat{\mu}$ assumes only the values 0 or 1. A $\mu \in M(G)$ is semi-idempotent if $\hat{\mu}(\gamma) = 0$ or 1 for all $\gamma > 0$ in Γ . The purpose of this note is to sketch a proof of the following theorem. THEOREM 1. If $\mu \in M(G)$ and $\hat{\mu}(\gamma)$ is an integer for all $\gamma > 0$ in Γ , then there exists a $\lambda \in F(G)$ such that $\lambda(\gamma) = \hat{\mu}(\gamma)$ for all $\gamma > 0$. In particular, if μ is a semi-idempotent measure on G, then there exists an idempotent measure λ on G such that $\hat{\mu}(\gamma) = \hat{\lambda}(\gamma)$ for all $\gamma > 0$ in Γ . This result was obtained by Helson [3], for the case G=T, the circle group, $\Gamma=Z$ the integer group. Also a special case of Theorem 1 for $G=T^2$, $\Gamma=Z^2$ was proven by Rudin [6]. OUTLINE OF PROOF. We assume first that $G = T^k$, the k-dimensional torus group and $\Gamma = Z^k$ is a totally ordered group. Then $Z^k = \Gamma_1 \oplus \Gamma_2$ where Γ_2 is a subgroup of the reals, Γ_1 is a totally ordered group, and $\Gamma_1 \oplus \Gamma_2$ is lexicographically ordered from the right. Let $\mu \in M(G)$ such that $\mathfrak{A}(\gamma)$ is an integer for all $\gamma > 0$ in Z^k . Let $E(\mu) = \{ \gamma \in \mathbb{Z}^k : \gamma > 0 \text{ and } \hat{\mu}(\gamma) \neq 0 \}$ and, for every positive integer n, let $$A_n = \{ \gamma \cdot \mu \in M(G) : \gamma = (\gamma_1, \gamma_2) \in E(\mu) \text{ and } \gamma_2 > n \}.$$ We then prove the following LEMMA. If $E(\mu)$ and A_n are defined as above, we have either - (1) $E(\mu)$ is contained in a finite union of (k-1)-dimensional hyperplanes, or - (2) $A_n \neq \emptyset$ for every n. If (1), then Theorem 1 follows by induction. If (2), we set ¹ This is an announcement of a portion of the author's dissertation at the University of Wisconsin written under the direction of Professor Walter Rudin. $$A = \bigcap_{n=1}^{\infty} \overline{A}_n$$ (\overline{A}_n) is the weak*-closure of A_n). Then A is nonempty and weak*-compact and hence contains an element $\nu \neq 0$, of minimal norm. Then $\nu \in F(G)$, and applying a lemma of Ito and Amemiya [5], we find that ν is a measure of the form $\gamma \cdot \chi_H \mu$ where χ_H is the characteristic function of a compact subgroup H of G, and $\gamma \in \Gamma$. Let $\mu_1 = \chi_H \mu$. Then $\mu = \mu_1 + (\mu - \mu_1)$ is an orthogonal decomposition of μ where $\mu_1 \in F(G)$ and $(\hat{\mu} - \hat{\mu}_1)(\gamma)$ is an integer for all $\gamma > 0$ in Γ . Now we can apply the argument above to the measure $\mu - \mu_1$. Since the norm of $\mu - \mu_1$ decreases at least one from that of μ , we see that after a finite number of steps, we obtain $$\mu = \sum_{i=1}^n \mu_i + \tau$$ where $\mu_i \in F(G)$ for $i=1, \dots, n$, and $\hat{\tau}(\gamma) = 0$ for all $\gamma > 0$. The proof of the theorem for arbitrary compact G is completed by a transfinite induction on the cardinality of Γ . In the proof of the lemma, we used the following theorem of P. J. Cohen [1] and Davenport [2]. THEOREM. Let Γ be a totally ordered group. Let $E = \{\gamma_1, \gamma_2, \dots, \gamma_N\}$ be a fixed set of N positive elements in Γ , $N \ge 3$. Suppose $\mu \in M(G)$, and $$|\mu(\gamma)| \ge 1$$ for $\gamma \in E$, $\mu(\gamma) = 0$ for $\gamma > 0$, $\gamma \notin E$. Then there exists a constant k, independent of the group G, such that $$||\mu|| > k(\log N/\log \log N)^{1/4}.$$ This theorem was proven by Cohen [1] and Davenport [2]. An examination of the proofs in these papers shows that they actually obtain the above theorem although they only considered the case where $\mu(\gamma) = 0$ for all $\gamma \notin E$. See also Hewitt and Zuckerman [4] for the case in which the torsion subgroup of Γ is an arbitrary finite group. We also have proven THEOREM 2. Let $Q = \{(n_1, \dots, n_k) \in \mathbb{Z}^k : n_i \geq 0 \text{ for } i = 1, \dots, k\}$. Suppose $\mu \in M(T^k)$ and $\hat{\mu}(q)$ is an integer for all $q \in Q$. Then there exists $a \lambda \in F(T^k)$ such that $\hat{\mu}(q) = \hat{\lambda}(q)$ for all $q \in Q$. ## **BIBLIOGRAPHY** - 1. P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. - 2. H. Davenport, On a theorem of P. J. Cohen, Mathematica 7 (1960), 93-97. - 3. H. Helson, On a theorem of Szego, Proc. Amer. Math. Soc. 6 (1955), 235-242. - 4. E. Hewitt and H. S. Zuckerman, On a theorem of P. J. Cohen and H. Davenport, Proc. Amer. Math. Soc. 14 (1963), 847-855. - 5. T. Ito and I. Amemiya, A simple proof of the theorem of P. J. Cohen, Bull. Amer. Math. Soc. 70 (1964), 774-776. - 6. W. Rudin, Permutations of Taylor coefficients of bounded functions, Duke Math. J. 28 (1961), 537-543. - 7. ----, Fourier analysis on groups, Interscience, New York, 1962. University of Wisconsin and University of Michigan