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I shall state a number of results on sine or cosine series with non-
negative coefficients; proofs of these and some related theorems will 
appear elsewhere. 

The following theorems are known. 

A [ l ] , [8]. If Xn i 0, <j>(x) = X X cos nx, and 0 < Y < 1, then J ^ n ^ X » 
< oo if and only if x~y<f)(x) £ L . 

A' [6]. If \ n are the Fourier coefficients of <f>, X n ^0 , and 1 < 7 < 3 , 
then ^n^~l\a < oo if and only if xrv[fi(x) — ̂ )(0)]GL. 

B [2], [3]. If Xn | 0, 4>(x) = X>« cos nx, Kp<*>, and (1 -p)/p 
<y < 1/p, then xr^(x) ELP if and only if 2)f*p+Pr~2*2 < oo. 

C [7]. If Xw i 0, <j>(x) = ]£X» cos nx, and 0 <y < 1, /fo# <£(x) £ L i p 7 
i / and 0^/3/ if Xn = OC»""7""1). 

There are similar theorems for sine series. 
The following theorems generalize A and C (with different neces­

sary and sufficient conditions), to series with nonnegative coefficients, 
and give a result that is related to B as A' is related to A. 

THEOREM 1. If XnèO, Xn are the Fourier sine or cosine coefficients 
of 4> and 0 <y < 1, then 

(1) E ^-^n < » 
if and only if 

J» T 

(x — a)~~y<l)(x)dx converges, 0 ^ a < J . 
a+ 

More precisely, (1) is necessary for (2) with a = 0 and sufficient for 
(2) for all a—an illustration of the principle that a Fourier series with 
nonnegative coefficients tends to behave as well at all points as it 
does at 0. (The case a = 0 is a special case of a more general result of 
Edmonds [4, p. 235].) Theorem A' can be generalized in the same way 
if 1 < 7 < 2 . 
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THEOREM 2. If Xn ^ 0 and X» are the Fourier sine or cosine coefficients 
of 4>, and l/p<y<(p + l)/p, then 

(3) |* - a \~v \<t>(x) - <t>(a) | G L*>, 0 ^ a < TT, 

00 / 00 V p 

(4) I » " - 2 X>*) < ». 
n=l \ &=n / 

More precisely, (4) is necessary for (3) if a = 0 and sufficient for 
(3) for all a. Theorem B can be obtained as a corollary. 

THEOREM 3. If X ^ O , Xn are the Fourier sine or cosine coefficients of 
<t>> and 0 < 7 < 1, then <££Lip 7 if and only if 

(5) e x * = 0(»-*). 
k—n 

When X/b | 0, (5) is equivalent to Xw = 0(# - 1~ 7) , so Theorem C is a 
corollary. Theorem 3 is formally the limiting case p = 00 of Theorem 2. 

Theorem 3 fails when 7 = 1. There are a number of substitutes, 
among them the following result, in which A* and X* denote the 
classes of continuous functions <j> such that <fi(x + h)-\-4>(x — h) — 24>{x) 
= 0(h) or o(h), uniformly in x [10, p. 43]. 

THEOREM 4. If X n ^ 0 and Xn are the Fourier cosine coefficients of <f>, 
then (5) with 7 = 1 is a necessary and sufficient condition for either 
f(x)-f(0)=O(x)orfeA*; 

(6) Z Xk = O^-1) 

is necessary and sufficient for either f(x) —/(O) =o(x) ör / £ X * ; if (6) 
holdsj then f (x) exists [ƒ' is continuous] if and only if Z&X& sin fee aw-
verges [converges uniformly], 

Paley (see [5, p. 72]; [9]) showed that if the sine series of a con­
tinuous function has nonnegative coefficients then the series con­
verges uniformly. As a corollary of Theorem 4 we have a localization 
of this. 

THEOREM 5. If </> has nonnegative sine coefficients Xw and 

(7) E * r % = 0 ( 1 » 
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then ]>̂ XA; sin kx converges (for any particular x) if and only if <j> is the 
derivative of its integral at x. 

In fact, if cj> is continuous, /</>£X* and so (7) holds. 
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