
JORDAN ALGEBRAS OF SELF-ADJOINT OPERATORS1 

BY DAVID M. TOPPING 

Communicated by A. A. Albert, July 31, 1964 

1. Introduction. The purpose of this note is to announce a real 
noncommutative (more precisely, nonassociative) generalization and 
counterpart to the theory of von Neumann algebras. The algebras 
in question are weakly closed Jordan algebras of self-adjoint (s.a.) 
operators, to be referred to below as JW'-algebras. 

The results obtained are remarkably parallel to the global von 
Neumann theory. Our principal contributions are the development of 
a theory of relative dimension, culminating in the Comparison Theo­
rem (from which a variety of structural information is obtained) to­
gether with an example of a new factor phenomenon not occurring in 
the von Neumann theory. Details and proofs will be published in the 
Memoirs of the Society. 

2. Quadratic ideals and annihilators. Let A be a JW-algebra and 
M any subset of A. The annihilator of M is the set ML = {a£:A : ab — 0 
for all bÇzM] {ab denotes the ordinary operator product). 

A quadratic ideal is a linear subspace I of A with aba^I whenever 
a £ 7 and b<EA (note that aba = 2a o {a o b) — a2 o 6, where aob 
— \{ab+ba)). The center of A is the set Z— {z^A: za — az for all 
a £ i | . 

THEOREM 1. The annihilators in a JW-algebra A are precisely the 
weakly closed quadratic ideals, and are of the form eAe— {eae: aÇ^A } , 
where e is a projection in A. The projections form a complete orthomodu-
lar lattice {so A has a largest projection which we assume is the identity 
operator 1). The annihilator of a Jordan ideal has the form eAe with e 
central. For a projection e(EA, eAe is a Jordan ideal if and only if e is 
central. The annihilator of a central subset is a direct summand. 

As usual, we define the central cover C{a) of aÇiA to be the smallest 
central projection e with ea — a. We call a faithful if C{a) = 1. 

COROLLARY 1. The central cover C{a) exists and is the unique central 
projection e for which {a)L= {e}1, where {a) is the principal Jordan 
ideal generated by a. 

1 Most of this work was completed while the author held a NATO Postdoctoral 
Fellowship. 
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A projection e£zA is termed abelian if the operators in eAe com­
mute (i.e. if eAe, is associative as a Jordan algebra). A JW-algebra A 
is type I if it possesses a faithful abelian projection. 

THEOREM 2. In any JWr-algebra A, there is a largest type I summand. 

3. Dimension theory. We define two projections e and ƒ in a JW-
algebra A to be equivalent (written e~f) if there is a finite sequence 
si, • • • , sn of symmetries ( = s.a. unitaries) in A with u*eu=f, where 
u = si • • • sn. We say that e and ƒ are exchanged by a symmetry s if 

REMARKS. Equivalence need not be finitely additive except when 
the projection lattice is modular (and hence a continuous geometry), 
and then equivalence is completely additive. If A is the s.a. part of a 
von Neumann algebra, this equivalence relation is the same as per-
spectivity and unitary equivalence (this is a recent result of P. A. 
Fillmore). 

Projections e and ƒ in A are related if they have equivalent nonzero 
subprojections in A. 

THEOREM 3. Equivalence is the same as projectivity. For a projection 
eÇ^A, C(e) = L U B {ƒ: ƒ < e} and C(e)±C(f) if and only if e and f are 
unrelated. Also C(e)=LXJB{sfs: f^e} where s ranges over all sym­
metries in A. Two related projections in A have nonzero subprojections 
in A which are exchanged by a symmetry in A. 

The next result more than justifies our notion of equivalence. Even 
for von Neumann algebras, this is a strengthening of the familiar 
technique. 

THEOREM 4 (THE COMPARISON THEOREM). Given any two projections 
e and f in a JWr-algebra A, there is a central projection h<E:A and a sym­
metry s<EA with s(eh)s^fh and s(f(l—h))s^e(l—h). 

We call a projection e modular if eAe has a modular projection 
lattice {A is called modular if 1 is). 

THEOREM 5. The following "global" conditions on a JVJ-algebra A 
are equivalent: 

(1) Each projection eÇzA satisfies: e~fGA and f^e imply f=e 
("finiteness"). 

(2) A has a modular projection lattice. 
(3) Every orthogonal family of equivalent projections in A is finite. 
If e and ƒ are modular, so is e\Jf. On the set of modular projections, 

perspectivity is transitive. If e is modular andf~e with ƒ ^e, then f—e. 
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If e and f are modular in A, then e<f and f<e imply that e and f are 
exchanged by a symmetry in A, 

A JW-algebra is locally modular if it has a faithful modular projec­
tion. We say that A is properly nonmodular if A has no central modu­
lar projections except zero, and purely nonmodular if A contains no 
modular projections except zero. 

THEOREM 6. Any JW'-algebra A decomposes uniquely into five sum-
mands as follows: 

(1) Type I modular {"finite, discrete"). 
(2) Type I properly nonmodular {"properly infinite, discrete"). 
(3) Type II modular {"finite, continuous"). 
(4) Type II properly nonmodular {"properly infinite, continuous"). 
(5) Type III purely nonmodular {"purely infinite"). 

{Types II and III are summands of the non-type I portion determined in 
Theorem 2.) 

REMARK. If A is the s.a. part of a von Neumann algebra, this de­
composition into types coincides with the classical one, even though 
the equivalence relations differ in the "infinite" cases. 

4. Structure. The dimension theory just mentioned can be applied 
to yield structural data. 

THEOREM 7. For any projection eÇ^A, the center of eAe is Ze, where 
Z is the center of A. Hence if A is a factor {Z = the reals), then eAe 
is also. 

We say that a JW-algebra is homogeneous if there is an orthogonal 
family [d] of abelian projections, any two of which are exchanged 
by a symmetry in A, such that LUB £*= 1. 

THEOREM 8. Two abelian projections in a JW-algebra A with the 
same central cover are exchanged by a symmetry in A. Any type I JW-
algebra is a product of homogeneous algebras. The "spectral multiplic­
ity" of a homogeneous JW-algebra is unique. 

A JW-algebra can also be separated into atomic and nonatomic 
portions. Regarding the "continuous" summand of a JW-algebra, 
we have 

THEOREM 9. If A is a JW-algebra having no type I portion, then any 
projection in A can be split into two orthogonal halves which are ex­
changed by a symmetry in A. 
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We call A simple if it has no nontrivial Jordan ideals, and strongly 
semisimple if the intersection of its maximal Jordan ideals is zero. 

THEOREM 10. A modular JW-factor is simple and any modular JW-
algebra is strongly semisimple. All JW-algebras are weakly central. A 
JW-algebra and its center have homeomorphic maximal (Jordan) ideal 
spaces. The norm-closed Jordan ideals of any JW-algebra are in a 1-1 
correspondence with the p-ideals of its projection lattice. 

5. Dimension and trace. We have employed some recent results 
of Arlan Ramsay to obtain 

THEOREM 11. Any locally modular JWr-algebra A possesses a canon­
ical dimension f unction d on its projection lattice L, taking values in the 
continuous extended real-valued functions on the Stone space of the 
center of L and satisfying: 

(1) d(e) = 0 if and only if e = 0. 
(2) d is completely additive. 
(3) d(ses) = d(e) for all symmetries stEA. 
(4) The projection e is modular if and only if d(e) is finite except on a 

nowhere dense set. 

If we define e**f to mean d(e) =zd(f)1 then (L, « ) is a dimension 
lattice satisfying axioms (A), (B), (C), (D') and (M) of Loomis (The 
lattice theoretic background of the dimension theory of operator algebrasy 

Mem. Amer. Math. Soc. No. 18 (1955), 36 pp.) such that central 
projections are «-invariant. If, in addition, L satisfies: 

(*) Each orthogonal family of modular projections having a common 
central cover is countable, 

then (L, « ) is the unique dimension lattice structure agreeing with 
~ ( = perspectivity, by Theorem 5) on the £-ideal of modular projec­
tions. 

REMARKS. Any JW-algebra acting on a separable Hubert space 
satisfies (*). A locally modular JW-factor satisfies (*) if and only if it 
is countably decomposable. Any direct product of locally modular 
JW-algebras satisfying (*) also satisfies (*). 

The type III summand of a JW-algebra can be given a type III 
dimension lattice structure (L, « ) making central projections « -
invariant by defining e «ƒ to mean that e and ƒ have the same central 
cover. 

By a center-valued trace we shall mean a normalized positive linear 
map ^ of a JW-algebra A onto its center Z such that <(>(za) = z$(a) 
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and (/)(sas) =<£(a) for aÇzA, z(~Z and each symmetry sÇ^A. 
Let G be the group of all finite products of symmetries from A. For 

a£^4 , let Ka be the norm-closed convex hull of the orbit of a under 
G acting by {u, a)—>uau*, where U<ELG and a(~A. 

THEOREM 12. For each a^At KaC\Z is nonempty (THE APPROXIMA­

TION THEOREM). A JW-algebra is modular if and only if it possesses a 
completely additive faithful center-valued trace. For such an algebra, the 
trace is unique. 

6. A new kind of factor. The JW-factor referred to is type I modu­
lar ("discrete, finite class") but infinite-dimensional as a real linear 
space. We outline the construction of this factor below. 

Let [si] be a (countably) infinite sequence of anticommuting sym­
metries (satisfying the Pauli "spin relations" SiSk+SkSi = 28ik) in a 
type Hi hyperfinite von Neumann factor acting on a separable Hu­
bert space. We take A to be the closure, in the weak operator topol­
ogy, of the real linear space spanned by the identity operator and the 
sequence \si\. This is easily seen to be a JW-algebra. 

The difficulty arises in showing that A is actually a factor. This is 
done geometrically by showing that A (partially ordered by its cone 
of positive semi-definite operators) is an antilattice in the sense that 
two operators in A have a greatest lower bound there only in the case 
where they are comparable in the ordering. 

Our factor A inherits a trace from the von Neumann factor en­
veloping it, and, on the projection lattice of A, the trace takes three 
values: 0, \ and 1. Each projection (5^0, 1) in A is both maximal and 
minimal (and therefore abelian). The maximal associative Jordan 
subalgebras of A are just the planes passing through 0 and 1. Any 
two projections (T^O, 1) are exchanged by a symmetry in A, and A is 
homogeneous of "spectral multiplicity" two. 
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