RESEARCH PROBLEMS

10. R. M. Redheffer: Operators on Hilbert space.

Let u, r, s, w, z denote closed linear operators defined on a Hilbert space H, with $r \neq 0$, $s \neq 0$ and $||w|| \leq 1$. Define operators

$$f(z) = u + rz(1 - wz)^{-1}s, \quad S_{\lambda} = \begin{pmatrix} r\lambda & u \\ w & \lambda^{-1}s \end{pmatrix}$$

on H and $H \times H$, respectively, λ being a positive scalar. As norm ||u|| we take sup |uv| for $v \in H$, |v| = 1, and similarly in other cases, such as $||S_{\lambda}||$. Lengths on $H \times H$ are related to those on H by

$$|(v_1, v_2)|^2 = |v_1|^2 + |v_2|^2, \quad v_i \in H.$$

Problem A. Give a simple proof of the following: If $||f(z)|| \le 1$ for all $||z|| \le 1$ such that $(1-wz)^{-1}$ exists, then $||S_{\lambda}|| \le 1$ for some λ .

Problem B. Give a simple proof of this: If $\sup ||f(z)|| < 1$ for $||z|| \le 1$, then f(z) has a fixed point in ||z|| < 1.

Problem C. What happens in Problem B if we only have $||f(z)|| \le 1$ for $||z|| \le 1$?

Problem D. Let U denote the class of unitary operators, and N the class with norm ≤ 1 . Study the class of functions h(z) that satisfy a "maximum principle" in the following sharp form:

$$\sup_{z\in N} \|h(z)\| = \sup_{z\in U} \|h(z)\|.$$

In Problems A and B the emphasis is on the word "simple." Both results have been established, but the only known proof is harder than the depth of the problems seems to warrant. I expect a simple proof because: the converse of Problem A is easy; both problems are easy when the unit ball is compact, e.g., matrices; the two problems are easily proved equivalent to each other; the appropriate form of Problem A when " $||f(z)|| \le 1$ for $||z|| \le 1$ " is replaced by "f(z) unitary for z unitary" is easy; and the fact that f(z) can be written $(a+bz)(c+dz)^{-1}$ suggests connections with many well-known theories.

In Problem D the theory developed should include the known fact that f(z) has the stated property when ||w|| < 1. (Received July 7, 1964.)

11. Solomon W. Golomb: Random permutations.

Let L_N be the expected length of the longest cycle in a random permutation on N letters, and let $\lambda_N = L_N/N$. (Thus, $\lambda_1 = 1$, $\lambda_2 = 3/4$, $\lambda_3 = 13/18$, $\lambda_4 = 67/96$, etc.) It is easily shown that the sequence $\{\lambda_N\}$ is monotonically decreasing, and hence a limit λ exists. Computation has shown $\lambda = .62432965 \cdot \cdot \cdot$, but nothing is known of the relationship of λ to other constants. What can be proved about the irrationality or transcendence of λ , and its relationship to classical mathematical constants? (Some nearby values *un*equal to λ include 5/8, $1-e^{-1}$, $(5^{1/2}-1)/2$, and $\pi/5$.) (Received June 8, 1964.)

ERRATA

Robert R. Korfhage: Correction to 'On a sequence of prime numbers.'

It has been brought to my attention that because of the lack of an overflow check in the programming system used the factors listed for n=7 are in error. Thus the value of P_8 is also wrong. Present knowledge indicates that probably $P_9 > P_8$, and thus Mullin's problem is still open. (Received July 16, 1964.)