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Let ƒ be continuous on [0, l ] and 0 g a < / 3 g l and let Bnf be the 
Bernstein polynomial of ƒ of degree n, denned by 

Bnf(x) = £ f^)^)^1 ~ *)W~"' 

In view of a result of E. V. Voronovskaya, which states that the 
boundedness of ƒ on [0, l ] and the existence of ƒ" at a point xG [0, l ] 
implies that 

x(l - x) / 1 \ 
Bnf(x) - f(x) = -±- -ƒ"(*) + ol-) (n-+«>), 

it has been conjectured [l, p. 22] that the relation 

£»ƒ(*)-ƒ(*) = <>(-) 

cannot be true for all xG [a, j8] unless ƒ is a linear function on [a, j8]. 
The following theorem related to this conjecture was proved by K. de 
Leeuw [2]: 

If ƒ is continuous on [0, 1 ] and 

Bnf(x)-f(X)=0(^j 
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holds uniformly on every subinterval [ce, ]8] of [0, 1] and if in addi­
tion 

at almost all points of [ce, jS], then ƒ is linear on [ce, /3]. 
We shall give here a simple proof of the original conjecture. 

THEOREM. Iff is continuous on [0, 1] and 

(1) * .ƒ (*) -ƒ(*) = *(-£•) (»->«>) 

holds f or each fixed x£(ce, jS), then f is a linear f unction on [a, fi]. 

PROOF. T O make the argument as transparent as possible we list 
first the properties of Bernstein polynomials used in this proof, 

(i) Bn(f+g)=Bnf+Bng and if f^g on [0, l ] then BJSBng. 
(ii) If h is a linear function on [0, l ] , then Bnh — h. 
(iii) If Q(x)=Ax2+Bx+C, then BnQ(x)-Q(x)=A(x(l-x)/n). 
(iv) If g is bounded on [0, l ] and g = 0 on [ce, /3], then Bng(x) 

— o(l/n) (»—>oo) for each fixed x in the interior of [ce, ]8]. (Actually, 
Bnf(x)=0(e-"Hx)n) (w-»oo), with 5(x) > 0 , but the weaker property 
is sufficient.) 

We need also the following lemma: 

LEMMA. Iff is continuous on [ce, j8], vanishes at a and /3 and has a 
positive maximum on [ce, /?] then there is a quadratic polynomial Q(x) 
= Ax2+Bx + C with A<0 such that 

(2) f{x) ^ Q(x) for all x G [a, 0] 

and 

(3) /(c) = Q(c) /or some c in the interior of [a, /?]. 

This lemma is geometrically almost obvious. We can namely choose 
the parabola P(x) =Ax2+Bx + C* with A < 0 such that its arc over 
[ce, j8] lies in the strip M£y£3M/2 where M = mdLXa^^f(x)>0. If 
d = mma^x^ (P(x)—f(x))1 then the quadratic polynomial Q(x) 
— P(x)—d has the required properties. 

To prove the theorem, suppose that/satisfies (1) for each x £ [ce, jS]. 
By subtracting a suitable linear function and using (ii), if necessary, 
we may assume that ƒ (ce) = ƒ (j8) = 0. We have to show that ƒ = 0 on 
[a,P]. 

Assume that the maximum of ƒ on [ce, /3] is positive. Then by the 
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preceding lemma we can find a polynomial Q satisfying (2) and (3). 
Since by (2) f(x) SQ(x), # £ [a> /3], we can find a bounded function g 
on [0, l ] such that g = 0 on [a, /3] and 

ƒ(*) ^ (?(*) + g(*) for all x G [0, l ] . 

Applying (i) we get 

Bnf(x) ^ BnQ(x) + Bng(x). 

Putting here x = c and using (3) we get 

Bnf(c) -f(c) ^ BnQ(c) - Q(c) + Bng(c). 

Since c is in the interior of [a, /3] we have by (iv) Bng(c) =o(l/n) 
(n—»oo). Using this result and (iii) we obtain 

c(l - c) / 1 \ 
«ƒ(*) - ƒ(*) â il - + o ( - ) (n -> oo), 

with 4 <0 , which is impossible by (1). Thus the maximum of ƒ on 
[a, ]8] cannot be positive. 

Likewise, by considering — ƒ instead of/, we see that the minimum 
of ƒ on [a, ]8] cannot be negative. 

Thus, ƒ = 0 on [a, /3], and the theorem is proved. 
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