ON CARDINALITIES OF ULTRAPRODUCTS

BY H. JEROME KEISLER

Communicated by L. Henkin, February 27, 1964

Introduction. In the theory of models, the ultraproduct (or prime reduced product) construction has been a very useful method of forming models with given properties (see, for instance, [2]). It is natural to ask what the cardinality of an ultraproduct is when we are given the cardinalities of the factors. In this paper we obtain some new results in that direction; however, the questions stated explicitly in [2, p. 208], are still open.

Let us first mention briefly some of the known results. Throughout this note we shall let D be a nonprincipal ultrafilter over a set I of infinite power λ . Additional notation is explained in §1 below.

- 1. $\alpha \leq \alpha^I/D \leq \alpha^{\lambda}$ [2, p. 205].
- 2. If D is not countably complete, then $\prod_{i \in I} \alpha_i/D$ is either finite or of power at least 2^{ω} [2, p. 208].
- 3. If D is uniform, then $\lambda^I/D > \lambda$; moreover, $(2^{(\lambda)})^I/D = 2^{\lambda}$, where $2^{(\lambda)} = \sum_{\beta < \lambda} 2^{\beta}$ [2, p. 206].
- 4. There exists a D such that if α is infinite, then $\alpha^I/D = \alpha^{\lambda}$ [2, p. 207], [1, p. 399], and [3, p. 838]. (Two more general versions for products of cardinals are given in [1].)

We shall prove the following results.

THEOREM A. (i) If α is infinite and D is not countably complete, then

$$\alpha^I/D = (\alpha^I/D)^{\omega}$$
.

(ii) For any α , γ , and D,

$$(\alpha^{\gamma})^I/D \geq (\alpha^I/D)^{\gamma}.$$

(iii) If D is uniform then

$$(\alpha^{(\lambda)})^I/D = (\alpha^I/D)^{\lambda} = \alpha^{\lambda}$$

where $\alpha^{(\lambda)} = \sum_{\beta < \lambda} \alpha^{\beta}$.

We introduce the notion of a (β, γ) -regular ultrafilter in §1, and use it to prove Theorem A and some more general results in §2.

1. **Regular ultrafilters.** We shall adopt all of the set-theoretical notation introduced in [1], including the notions of an ultraproduct $\prod_{i\in I} \alpha_i/D$ and ultrapower α^I/D of the cardinals α_i , α . We denote the set of all functions on X into Y by $^{\mathbf{x}}Y$. We let S(X) be the set of all

subsets of X, and $S_{\beta}(\gamma)$ the set of all subsets of γ of power less than β . Assume hereafter that β , γ are infinite. If f is a function on X into S(Y), then we define the function f^* on Y into S(X) by

$$f^*(y) = \{x \in X : y \in f(x)\}, \quad \text{for } y \in Y.$$

Thus we always have $f^{**} = f$.

DEFINITION 1.1. Let f be a function on I into $S(\gamma)$. We shall say that f makes D (β, γ) -regular if $f(i) \in S_{\beta}(\gamma)$ for all $i \in I$ and $f^*(\eta) \in D$ for all $\eta < \gamma$. D is (β, γ) -regular if there exists an f which makes D (β, γ) -regular.

LEMMA 1.2. Let g be a function on γ into S(I). Then g^* makes $D(\beta, \gamma)$ -regular if and only if $g(\eta) \in D$ for all $\eta < \gamma$ and $\bigcap_{\eta \in Y} g(\eta) = 0$ for all $Y \subseteq \gamma$ of power β .

D is said to be *uniform* if every member of D is of power λ (cf. [2]). As pointed out in [2], the uniform ultrafilters are the only interesting ones as far as the problems considered here are concerned.

LEMMA 1.3. (i) If D is not countably complete, then D is (ω, ω) -regular.

- (ii) If $\beta > \gamma$, then D is (β, γ) -regular.
- (iii) If D is uniform, then D is $(cf(\lambda), cf(\lambda))$ -regular.
- (iv) If D is $(cf(\gamma), cf(\gamma))$ -regular, then D is (γ, γ) -regular.

REMARK. The notion of regularity has other simple properties which we shall not need here. For instance, if D is (β, γ) -regular and $\beta \leq \beta'$, $\gamma \geq \gamma'$, then D is (β', γ') -regular. If λ , $\beta < \gamma$, then D is not (β, γ) -regular. Moreover, if $\lambda < cf(\gamma)$, then D is not (γ, γ) -regular.

The proofs of Lemmas 1.2 and 1.3 above may easily be supplied by the reader.

2. Cardinality theorems.

THEOREM 2.1. Suppose that f makes D (β, γ) -regular, and let β_i be the power of f(i) for each $i \in I$. Then for any cardinals α_i , $i \in I$, we have

$$\prod_{i \in I} (\alpha_i^{\beta_i})/D \geqq \left(\prod_{i \in I} \alpha_i/D\right)^{\gamma}.$$

PROOF. For each i, let g_i be a one-one function on $f^{(i)}\alpha_i$ into $\alpha_i^{\beta_i}$. Define the function g on $f^{(i)}\alpha_i$ into $f^{(i)}\alpha_i$ by

$$g(\langle h_{\eta} \rangle_{\eta < \gamma}) = k,$$

where

$$k(i) = g_i(\langle h_n(i) \rangle_{n \in f(i)})$$
 for each $i \in I$.

Now consider two arbitrary elements $h = \langle h_{\eta} \rangle_{\eta < \gamma}$, $h' = \langle h'_{\eta} \rangle_{\eta < \gamma}$ of ${}^{\gamma}(P_{i \in I} \alpha_i)$, and let g(h) = k, g(h') = k'. Suppose that there exists $\eta < \gamma$ such that $h_{\eta} \not\equiv_D h'_{\eta}$. Whenever $h_{\eta}(i) \not\equiv h'_{\eta}(i)$ and $\eta \in f(i)$ we have $k(i) \not\equiv k'(i)$. Since $f^*(\eta) \in D$ it follows that $k \not\equiv_D k'$. The desired inequality follows.

Theorem A follows from Lemma 1.3 and Theorem 2.1. Indeed we have the following more general result.

THEOREM 2.2. (i) If each cardinal α_i is infinite and D is not countably complete, then

$$\prod_{i \in I} \alpha_i / D = \left(\prod_{i \in I} \alpha_i / D \right)^{\omega}.$$

(ii) For any α_i , γ , and D, we have

$$\prod_{i \in I} (\alpha_i^{\gamma})/D \ge \left(\prod_{i \in I} \alpha_i/D\right)^{\gamma}.$$

(iii) If D is uniform and $cf(\gamma) = cf(\lambda)$, then

$$\prod_{i \in I} (\alpha_i^{(\gamma)})/D \ge \bigg(\prod_{i \in I} \alpha_i/D\bigg)^{\gamma}.$$

(iv) If D is uniform and, for each $i \in I$, $\{j \in I : \alpha_j \ge \alpha_i\} \in D$, then

$$\prod_{i \in I} (\alpha_i^{(\lambda)})/D = \left(\prod_{i \in I} \alpha_i/D\right)^{\lambda} = \left(\prod_{i \in I} \alpha_i\right)^{\lambda}.$$

Proof. We observe that under the hypotheses of Theorem 2.1,

$$\prod_{i \in I} (\alpha_i^{(\beta_i)})/D \ge \bigg(\prod_{i \in I} \alpha_i/D\bigg)^{\gamma}.$$

Then (i), (ii), and (iii) follow using Lemma 1.3 with $\beta = \gamma = \omega$, $\beta = \gamma^+$, and $\beta = \gamma$, respectively. To prove (iv), we note that $\alpha_i \leq \prod_{j \in I} \alpha_j / D$ for each $i \in I$, and hence

$$\left(\prod_{i \in I} \alpha_i / D\right)^{\lambda} \leq \prod_{i \in I} (\alpha_i^{(\lambda)}) / D \leq \prod_{i \in I} (\alpha_i^{(\lambda)}) \leq \left(\prod_{i \in I} \alpha_i\right)^{\lambda}$$
$$\leq \left(\prod_{i \in I} \left(\prod_{i \in I} \alpha_i / D\right)\right)^{\lambda} = \left(\prod_{i \in I} \alpha_i / D\right)^{\lambda}.$$

THEOREM 2.3. Suppose that each n_i is a finite cardinal and D is not

countably complete. Let $q \in {}^{\omega}\omega$ be such that $\lim_{m \to \infty} q(m) = \infty$. If $\prod_{i\in I} n_i/D$ is infinite, then

$$\prod_{i \in I} (n_i^{q(n_i)})/D \ge \left(\prod_{i \in I} n_i/D\right)^{\omega}.$$

PROOF. Since $\prod_{i \in I} n_i/D$ is infinite, we have $\{i \in I: n_i > m\} \in D$ for each $m < \omega$. Let f be the function on I into $S_{\omega}(\omega)$ defined by

$$f(i) = \{0, 1, \dots, q(n_i) - 1\}, \quad \text{for each } i \in I.$$

For each $r < \omega$, there is a greatest $m < \omega$ such that $q(m) \le r$, and hence

$$f^*(r) = \{i \in I : q(n_i) > r\} \supseteq \{i \in I : n_i > m\} \in D.$$

Thus f makes D (ω, ω) -regular. The result now follows from Theorem 2.1 with $\beta = \gamma = \omega$.

Notice that the result 2 stated in the introduction follows from the above theorem, because if $\prod_{i \in I} \alpha_i/D$ is infinite then we may choose n_i such that $n_i^{n_i} \leq \alpha_i$ and $\prod_{i \in I} n_i/D$ is infinite.

We conclude with some historical remarks. The (ω, λ) -regular ultrafilters have been considered in the literature, for instance in [1], [2], [3], [6]. The result 4 stated in the introduction was shown in [1], [2], [3] to hold for all (ω, λ) -regular ultrafilters D. It is not difficult to show that any ultrafilter D which belongs to the class $Q(\alpha^+)$ defined in [4] is (ω, α) -regular. However, by Theorem 5.1 of [5], there is an (ω, λ) -regular D which is not a member of $Q(\omega_2)$.

REFERENCES

- 1. C. C. Chang and H. J. Keisler, Applications of ultra-products of pairs of cardinals to the theory of models, Pacific J. Math. 12 (1962), 835-845.
- 2. T. Frayne, A. C. Morel, and D. Scott, Reduced direct products, Fund. Math. 51 (1962), 195–228.
 - 3. H. J. Keisler, Limit ultrapowers, Trans. Amer. Math. Soc. 107 (1963), 382-408.
 - 4. ———, Ultraproducts and elementary classes, Indag. Math. 23 (1961), 477-495.
 5. ———, Good ideals in fields of sets, Ann. of Math. (2) 79 (1964), 338-359.
- 6. S. B. Kochen, Ultraproducts in the theory of models, Ann. of Math. (2) 74 (1961), 221-261.

University of Wisconsin