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Introduction. In the theory of models, the ultraproduct (or prime
reduced product) construction has been a very useful method of
forming models with given properties (see, for instance, [2]). It is
natural to ask what the cardinality of an ultraproduct is when we
are given the cardinalities of the factors. In this paper we obtain
some new results in that direction; however, the questions stated ex-
plicitly in [2, p. 208], are still open.

Let us first mention briefly some of the known results. Throughout
this note we shall let D be a nonprincipal ultrafilter over a set I of
infinite power N\. Additional notation is explained in §1 below.

1. aZal/D <o [2, p. 205].

2. If D is not countably complete, then ][;er ai/D is either finite
or of power at least 2¢ [2, p. 208].

3. If D is uniform, then N /D>\; moreover, (2M)!/D =2* where
200 = 3,326 [2, p. 206].

4. There exists a D such that if « is infinite, then af/D=0a* [2, p.
207], [1, p. 399], and [3, p. 838]. (Two more general versions for
products of cardinals are given in [1].)

We shall prove the following results.

THEOREM A. (i) If e is infinite and D is not countably complete, then
af/D = (a!/D)~.
(ii) For any a, v, and D,
(@)'/D z (/D).
(iii) If D is uniform then
(a®)1/D = (21/ D} = o
where a® = > 50 ab.

We introduce the notion of a (8, v)-regular ultrafilter in §1, and use
it to prove Theorem 4 and some more general results in §2.

1. Regular ultrafilters. We shall adopt all of the set-theoretical
notation introduced in [1], including the notions of an ultraproduct
I1:er /D and ultrapower af/D of the cardinals a;, . We denote the
set of all functions on X into ¥ by ¥V. We let S(X) be the set of all
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subsets of X, and Ss() the set of all subsets of ¥ of power less than .
Assume hereafter that 8, 4 are infinite. If f is a function on X into
S(Y), then we define the function f* on Y into S(X) by

ffo) = {xEX:yEfw)}, forye Y.

Thus we always have f**=f.

DerINITION 1.1. Let f be a function on [ into S(y). We shall say
that f makes D (B, v)-regular if f(z) ESs(y) for all &I and f*(n) ED
for all n<y. D is (B, v)-regular if there exists an f which makes
D (B, v)-regular.

LEMMA 1.2. Let g be a function on vy into S(I). Then g* makes
D (B, v)-regular if and only if g(n) ED for all n<vy and N,ey g(n) =0
for all YT of power (.

D is said to be uniform if every member of D is of power \ (cf. [2]).
As pointed out in [2], the uniform ultrafilters are the only interesting
ones as far as the problems considered here are concerned.

Lemma 1.3. (i) If D is not countably complete, then D is (w, w)-
regular.

(i) If B>vy, then D is (B, v)-regular.

(iii) If D s uniform, then D is (cf(\), cf(N))-regular.

@iv) If D is (cf(vy), cf(v))-regular, then D is (v, v)-regular.

REMARK. The notion of regularity has other simple properties
which we shall not need here. For instance, if D is (8, v)-regular and
B=@',v=7v',then Dis (8, v')-regular. If \, B<4~, then D is not (8, v)-
regular. Moreover, if N <cf(y), then D is not (v, v)-regular.

The proofs of Lemmas 1.2 and 1.3 above may easily be supplied by
the reader.

2. Cardinality theorems.

THEOREM 2.1. Suppose that f makes D (B, v)-regular, and let B3; be
the power of f(3) for each & 1. Then for any cardinals a;, 1< I, we have

. Y
11 49/0 2( L a/D)"
el ‘el

Proor. For each 7, let g; be a one-one function on /®a; into of.
Define the function g on 7(P;er @;) into Pier/Pa; by

4 ((hv>n<1) = £k,
where

k(@) = gi((1a(8) dner i) for each s € I.
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Now consider two arbitrary elements k= {(h,)y<y, B’ = (b Yy<y of
Y(Pier o), and let g(h) =k, g(h’) =Fk’. Suppose that there exists 7 <y
such that #h,s%2ph,;. Whenever h,(2)#hk, () and nE f(z) we have
k(1) #E'(i). Since f*(n) €D it follows that ks%pk’. The desired in-
equality follows.

Theorem A follows from Lemma 1.3 and Theorem 2.1. Indeed we
have the following more general result.

TuEOREM 2.2. (i) If each cardinal a; is infinite and D is not count-
ably complete, then

Hai/D = <HO(;/D) .
iel iel
(ii) For any a;, 7, and D, we have
Y
11 /0 2 (L D)
€Il 1€l
(iii) If D is uniform and cf(y) =cf(\), then
%) Y
H(a; )/Dg(Hai/D>.
el i€l
(v) If D is uniform and, for each i<I, {jEI: a;Za;} €D, then
) A N
IT@)/pD=(1la/D) =( Ile).
el iel el
Proor. We observe that under the hypotheses of Theorem 2.1,
. k4
Il (™)/D 2 ( II a,«/D) :
el 1€l

Then (i), (ii), and (iii) follow using Lemma 1.3 with B=y=w, B=v",
and B=v, respectively. To prove (iv), we note that a; < H,-e, a;/D
for each <& 1, and hence

( II az-/D)x <1 @”)/p <M g( 11 a)

el el el i€l

= (U(tes)) = (Hen).

THEOREM 2.3. Suppose that each n; is a finite cardinal and D is not
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countably complete. Let q&E“w be such that limm.. g(m)=c. If
Hiez n;/D 1is infinite, then

II ")/D 2 (H m-/D) :
el el

ProoF. Since Hie] n:/D is infinite, we have {iEI: ni>m} &D for
each m <w. Let f be the function on I into S,(w) defined by

f@G) = {0, 1,---,q(n¢)—1}, for each i € I.
For each 7 <w, there is a greatest m <w such that ¢(m) =r, and hence
() = {i € I q(ns) > r} D {ic€I:n;>m} € D.

Thus f makes D (w, w)-regular. The result now follows from Theorem
2.1 with B=y=w.

Notice that the result 2 stated in the introduction follows from
the above theorem, because if [Jier ai/D is infinite then we may
choose #; such that #;* £«; and Hiez n;/D is infinite.

We conclude with some historical remarks. The (w, N\)-regular ultra-
filters have been considered in the literature, for instance in [1], [2],
[3], [6]. The result 4 stated in the introduction was shown in [1],
[2], [3] to hold for all (w, N)-regular ultrafilters D. It is not difficult
to show that any ultrafilter D which belongs to the class Q(at) de-
fined in [4] is (w, &)-regular. However, by Theorem 5.1 of [5], there
is an (w, N)-regular D which is not a member of Q(ws).
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