
WHAT THE BEES KNOW AND WHAT 
THEY DO NOT KNOW 

L. FEJES TÓTH 

In the first part of this paper we construct a more economical 
honeycomb than that of the hive bees for any parameters involved in 
the problem. The second part gives a survey of some further solved 
and unsolved isoperimetric problems concerning cell-aggregates. 

I. Honeycombs. The honeycomb of the bees is a loose tissue of 
wax forming a plane layer. The first things on it which catch one's 
eye are the regular hexagonal patterns on both sides. The hexagons 
are the openings of prismatic vessels, called bee-cells. Kepler de­
scribed the shape of the bee-cells more fully. It turned out that the bot­
tom of a cell consists of three equal rhombi as shown in Figure lb . 
Thus the two kinds of cells having their openings in opposite direc­
tions are separated by a zigzagged surface and not by a plane, as one 
would expect at first. 

Why do the bees build such a strange conformation? 
According to a widely spread hypothesis, going back to Pappus, 

the bees aim at economy: If, by some reason, the volume of a cell and 
the width of the whole layer are given, they try to use the minimum 
amount of wax per cell. Although among the various effects which 
interact in producing the honeycomb the utilitarian human motive 
attributed to the bees seems to play the least part, the above hypoth­
esis was the source of highly interesting investigations. Thus we ac­
cept this hypothesis and try to point out what the bees do well and 
what they do not do well from the point of view of making the sur­
face-area of their cells small. 

To give the problem a precise formulation we define a honeycomb as 
a set of congruent convex polyhedra, called cells, filling the space 
between two parallel planes without overlapping and without inter­
stices in such a way that 

(1) Each cell has a face, called base (or opening) on one of the two 
planes but does not have faces on both planes. 

(2) In the congruence of two cells their bases correspond to each 
other. 

The distance between the parallel planes is the width of the honey­
comb. 

An address delivered before the Chicago meeting of the Society on April 24, 1964 
by invitation of the Committee to Select Hour Speakers for Western Sectional Meet­
ings; received by the editors February 14, 1964. 
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Let w be the width of a honeycomb, v the volume of one of its cells 
and a the area of the base of a cell. Consider a large cylindrical sec­
tion of the honeycomb, the area of a base-circle of which equals A. 
Since the two base-circles contain approximately 2 A /a openings, the 
cylinder contains approximately the same number of cells. Thus the 
volume Aw of the cylinder equals approximately 2Av/a. This argu­
ment, which can easily be made precise, shows that wa = 2v. The area 
a of the openings being uniquely determined by v and w, it is all the 
same whether, in the following problem, we consider the cells as open 
vessels, the surface of which consists only of the internal faces, or as 
closed polyhedra. 

We now formulate the 
First isoperimetric problem for honeycombs. Among the polyhedra of 

volume v generating a honeycomb of width w find that one of least 
surface-area. 

Though the solution of this problem is not known as yet, the follow­
ing considerations will give us useful information. 

In the honeycomb of the bees w is large in proportion to \/v. In 
such a case it is reasonable to erect right prisms of height w/2 on 
the bases. Something may be gained by a suitable formation of the 
bottoms, but the solution will depend, above all, on the shape of the 
base. In this respect the bees make a good choice, because of all con­
vex plane-fillers of given area the regular hexagon has the least perim­
eter. 

Choosing regular hexagonal bases the question of the most eco­
nomical bottom-figure arises. In the rhombic bottom-figure we have 
one degree of freedom : we can turn the planes of the rhombi around 
their "horizontal" diagonals without changing v and w. In which 
position will the surface-area be minimal? The history of the solution 
of this famous problem, raised by Reaumur, and the deep impression 
it made have been described in some books (see e.g. [ l]) . I t turned 
out that, in close accordance with the shape of the bee-cells, the 
rhombi must include an angle equal to 120°. Thus if for some reason 
the bees stick to a rhombic bottom-figure, they do excellent work. 

Before proceeding with the case of "deep" cells we make a remark 
which will give us an orientation in the general case. Let S(v, w) be 
the surface-area of the best open cell. Since for any fixed value of v, 
S{vy w) is large for both large and small values of w, there must be an 
"absolute best" cell giving the solution of the 

Second isoperimetric problem for honeycombs. Among the open cells 
of volume v generating a honeycomb (of any width) find that one of 
least surface-area. 
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Is the solution of this problem a bee-cell? The answer is: No. 
Two bee-cells can be put together with their openings so as to form 

a "telescopically elongated" rhombic dodecahedron. It is easy to 
show that among these solids the rhombic dodecahedron (Figure la) 
is the best from the point of view of the isoperimetric problem, i.e., 
it yields the minimum of the quotient 5 3 / F2, where 5 and V are the 
surface-area and the volume of the body. The rhombic dodecahedron 
represents one type of the so-called parallelohedra, or Fedorovean 
space-fillers, defined as convex polyhedra whose translated replicas 
can be put together along whole faces so as to fill the space com­
pletely. But we know a better parallelohedron than the rhombic 
dodecahedron, namely the truncated octahedron. Halving the trun­
cated octahedron by a plane orthogonal to one of its hexagonal zones 
of faces we obtain a cell generating a honeycomb and it may be con­
jectured that this cell is the solution of our second problem. Anyway 
the solution is not a half of a rhombic dodecahedron which is the best 
cell the bees produce while building their cells. The bees start with 
the bottom and proceed to build the side walls. But they do not stop 
at the optimal height, when each cell is the half of a rhombic dodeca­
hedron, but continue building rather deep cells. We suppose that they 
have good reason to do so. Therefore we return to our first problem in 
the case of large values of wz/v. 

Also the side walls of a half of a truncated octahedron can be 
elongated. But having irregular openings these cells cannot compete 
with those obtained from a rhombic dodecahedron. Yet we can make 
a trial with a parallelohedron of the type of a truncated octahedron 
having a regular hexagonal zone of faces. 

We elongate the "vertical" diagonal of a regular octahedron sym­
metrically in both directions so as to obtain an octahedron whose 
dihedral angles a t the horizontal edges are equal to 120°. First we 
truncate this octahedron by two horizontal planes touching the in-
sphere of the body. The obtained polyhedron is the intersection of two 
right regular hexagonal prisms. We continue to cut off the remaining 
corners of the octahedron by planes perpendicular to the correspond­
ing diagonals of the octahedron. Performing this second kind of 
truncations a t a suitable equal depth the hexagonal faces will be 
centro-symmetric. Since the remaining faces are squares and rhombi 
all faces will have central symmetry (Figure 2a). Therefore this ir­
regular truncated octahedron is a parallelohedron. I t has two squares 
each of side length, say, s. The eight faces adjacent to the squares 
are hexagons having two opposite sides of length 5 at a distance 5 
from one another. The diagonal of a hexagon parallel to these sides 
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FIGURE la FIGURE 2a 

FIGURE lb FIGURE 2b 

FIGURE lc FIGURE 2C 
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has a length equal to 3s/2, as can be seen by looking at the poly­
hedron from the direction of a regular hexagonal zone (Figure 2c). 
Thus the length of the shorter edges equals 

sm+®> 
V(S)s 

The polyhedron has four rhombi of side-length \ / (5 )s /4 and a di­
agonal of length s/(3)s/2. Thus the length of the other diagonal is 
V(2)s/2. 

Now we can evaluate the surface-area of our polyhedron : 

5s2 V(6)s2 24 + A / 6 
S = 2s2 + 8 h 4 ——-- = s2. 

4 8 2 

The volume V of the polyhedron equals the volume of a regular 
hexagonal prism having an altitude equal to 3s/2 and edges of length 
s a t the hexagonal faces. Thus F=9 \ / (3 ) s 3 / 4 . (It is interesting to 
note that in the case of unit volume the surface-area 

V 2 

V7 
2 24 + V6 

= 5.340 
9 3 

of our body is less than the surface-area «^(108 V2) = 5.345 • • • of 
the rhombic dodecahedron but greater than the surface-area 
| v / 4 ( l + v /12) =5.315 •• • of the Archimedean truncated octa­
hedron.) 

Letting s = 1 and elongating our body in the axial direction of one 
of its regular zones by x we obtain a body of surface-area 

2 4 + V6 
Sz = h 6x 

2 

and volume 

9A/3 3^3 
Vx = + x. 

4 2 
We choose x so that Vx equals the volume of a rhombic dodecahedron 
having a regular hexagonal section of side-length 1 : 

4 2 T 2 

Hence 
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3 - V 8 
X = Xo = ' 

2 

showing that the "elongation" is negative. The condition x> — 1 of 
performing such a transformation being satisfied we obtain a body 
of surface-area 

1 2 + V3 
SXo = 3 + = 12.71002 • • • 

V2 

which is less than the surface-area 9\ /2 = 12.7279 • • • of the rhombic 
dodecahedron. 

The two kinds of cells which arise by bisecting the rhombic dodeca­
hedron and our shortened snub octahedron have equal volumes and 
congruent openings. Thus they generate honeycombs of equal width. 
But the latter has a smaller surface-area than the first and, obviously, 
the same holds for any elongations of them. As to negative elonga­
tions observe that the first cell (arising from the rhombic dodeca­
hedron) can be shortened at most by V 2 / 4 = 0.35 • • • while in the 
case of the second cell (arising from the shortened snub octahedron) 
we have a wider latitude for shortening it by 1/2 — (3 — \/%)/2 
= 0.41 • * • . Thus, recapitulating our result, we can say: Instead of 
closing the bottom of a cell by three rhombi, as the bees do, it is always 
more efficient to use two hexagons and two rhombi. 

We must admit that all this has no practical consequence. By 
building such cells the bees would save per cell less than 0.35% of 
the area of an opening (and a much smaller percentage of the surface-
area of a cell). On the other hand, the walls of the bee-cells have a 
non-negligible width which is, in addition, far from being uniform 
and even the openings of the bee-cells are far from being exactly regu­
lar. Under such conditions the above "saving" is quite illusory. Be­
sides, the building style of the bees is definitely simpler than that 
described above. So we would fail in shaking someone's conviction 
that the bees have a deep geometrical intuition. 

II. Two-dimensional honeycombs, tessellations, drying mud, wall-
systems, cellular tissues, foam. The definition of a honeycomb can 
be extended to any dimensions. In a joint paper Bleicher and I [2] 
have given a complete enumeration of two-dimensional honeycombs. 
The types of such honeycombs turned out to be rather limited, so 
that it was not difficult to pick out the solutions of the isoperimetric 
problems. Depending on the width of the honeycomb and the area 
of a cell, the best cells are a half of an elongated regular hexagon or an 
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FIGURE 3 FIGURE 4 

isosceles triangle (Figure 3). The absolute best cell is, of course, a 
half of a regular hexagon. 

Let us observe that by dropping the second postulate defining a 
honeycomb we obtain "unnatural" honeycombs like those exhibited 
in Figure 4. However, this does not change the solutions of the iso-
perimetric problems. 

What happens if we even drop the congruence of the cells and con­
sider only cells of equal and given area? We can then inquire about 
the minimum of the average perimeter of the cells defined by a 
suitable limiting value. For incongruent cells a second problem arises 
which is the dual counterpart of the first one. We can consider cells 
of equal and given perimeter and ask about the maximum of the 
average area of the cells. I t would be nice to prove that the solutions 
are, in both problems, the same as for congruent cells (in which case 
the two problems are equivalent). 

The analogous problems for tessellations are as follows. 
(a) Decompose the Euclidean plane into parts of unit area so that 

the average perimeter of the parts should be as small as possible. 
(p) Decompose the Euclidean plane into parts of unit perimeter so 

that the average area of the parts should be as great as possible. 
I t is known [3 ] that under the restriction to convex cells the solu­

tion of problem (a) is the regular hexagonal tessellation. There is no 
doubt that the same is true for general cells. Nevertheless, this con­
jecture resisted all attempts at proving it. On the other hand, prob-
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lem (p) is solved in its full generality [4]. The solution is again the 
regular hexagonal tessellation. 

These extremal properties of the hexagonal tessellation may be 
extended to its spherical and hyperbolic analogues, namely to the 
regular tessellations with trihedral vertices. As to problem (a) we 
mention the following theorem [5]. 

If U is the union of n cells of a regular {spherical, Euclidean or hyper-
bolic) tessellation with trihedral vertices then among the decompositions 
of U into n convex cells of equal area the regular decomposition has the 
least total edge-length. 

The difficulties involved in the problem of generalizing this theorem 
to nonconvex cells is illustrated by the following interesting remark 
due to A. Heppes: If ft is a positive integer different from 2, 3, 4, 6 
and 12 then the shortest net which decomposes the sphere into n 
parts of equal area necessarily contains a nonconvex mesh. 

What is the situation if, e.g., ^=12? Are all meshes convex? If 
so then, in view of the above theorem, they must be regular penta­
gons. 

The following theorem [4] involves the solution of problem (p). 
Let U be the union of n faces of a regular Euclidean or hyperbolic 

tessellation with trihedral vertices. If we decompose U in any way into n 
connected parts the perimeter of the part of greatest perimeter attains its 
minimum for the regular decomposition. 

For spherical tessellations this theorem must be modified. If, 
namely, U consists of the whole sphere no part is allowed to have a 
greater area than a hemisphere. 

In his book Kaleidoskop der Mathematik (Berlin, 1959), H. Stein-
haus gives a "theory" of the breaking lines arising on a drying table 
of mud. Similar lines may be seen on potteries covered with special 
glaze which contracts considerably when drying. We have some rea­
son to suppose that these lines come into being successively so that 
at each turn one of the parts of greatest area splits along a shortest 
line into two parts of equal area. What can be said about the total 
length of the lines after the nth breaking? 

Let P« be the sum of the perimeters of the parts after a decomposi­
tion into n parts. I t is easy to show that if the original domain is a 
rectangle of area A, we have 

Pn 
WA ^ lim inf ^ 2(2*'* + 2"1 /4)VA, 

n-*«> S/M 

Pn 

2(2i/4+ 2-1/4)v/-4 S lim sup ^ V1&VA. 
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The bound 4y/A corresponds to the case when the partial domains 
are squares. Of course, even in this best situation of a successive 
decomposition the total perimeter is greater than it is in an immediate 
decomposition into hexagons. 

Do these inequalities hold for any domain of area A? Probably» 
yes. This may be conjectured from the fact that, starting with any 
domain, for great values of n the bulk of the partial domains will have 
a nearly rectangular shape. 

After this digression we return to problem (a) whose connection 
with an economical building of a honeycomb consisting of incon­
gruent cells is obvious. We restrict ourselves to convex cells; on the 
other hand, we want to take into consideration the width of the cell-
walls. 

FIGURE 5 

We define a wallwork as a connected domain bounded by at least 
two closed curves. Among these curves there is one, the contour of 
the wallwork, which encloses the whole wallwork. The domains en­
closed by the remaining curves are called cells. The width of the wall-
work is the minimal distance between two points belonging to differ­
ent bounding curves. 

Now we want to construct a wallwork of given contour and given 
width containing as great a number of convex cells of given area as 
possible. This amounts to making the area of the wallwork small. 
The following theorem [ó] shows that for a "big" contour the solu­
tion is a regular hexagonal wallwork (Figure 5). 

Consider a wallwork of width 2t lying in a convex hexagon of area 
H. If the wallwork has n convex cells all of area è h, then 
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^ fy/H - ^(12)/y 

Here a hexagon means a polygon with at most six sides. Note that 
(\A4 ±v / (12) / ) 2 equals the area of a regular hexagon arising from 
another one of area A by displacing each side by t outward or inward, 
respectively. 

In certain cellular tissues the cells do not completely fill the avail­
able space. The consideration of such tissues leads to new mathe­
matical problems. We consider the tissue as consisting of nonover-
lapping plastic cells all contained in a given part of space. Supposing 
first that the cells have the same constant volume, we can ask what 
shape and arrangement the cells must assume in order to make their 
total surface-area as small as possible. Supposing, secondly, that the 
cells have equal and unchanged surface-area, we can ask in what shape 
and arrangement the total volume of the cells will be as great as 
possible. 

In the stem of certain plants the cells may be considered as small 
columns considerably elongated in the axial direction so that their 
volume and surface-area may be supposed to be proportional to the 
area and perimeter of their sections. This suggests the following two-
dimensional analogues of the above problems. 

(A) Consider in the Euclidean plane a set of nonoverlapping discs 
of unit area having a given number-density. Find the shape and the 
arrangement of the discs in which their average perimeter attains its 
minimum. 

(P) Consider in the Euclidean plane a set of nonoverlapping discs 
of unit perimeter having a given number-density. Find the shape and 
the arrangement of the discs in which their average area attains its 
maximum. 

The number-density of a set of discs scattered over the plane is de­
fined by a suitable limiting value and may be interpreted as the num­
ber of discs per unit of area. Thus, instead of considering an infinite 
set of discs of given number-density, we can, roughly speaking, con­
sider a great number of discs lying in a given circle (or in any domain 
of fixed shape). Obviously, the problems (A) and (P) are generaliza­
tions of the problems (a) and (p). 

In the case of convex discs problem (P) was solved in a paper of the 
author [7] and problem (A) in a common paper of the author and 
Heppes [9]. For small values of the number-density d the extremal 
discs are circles arranged in an arbitrary way. Increasing d} the circles 
will get into hexagonal close-packing and we know that, in some 
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FIGURE 6 

way, they must turn into regular hexagons. How does this transi­
tion go? The answer is the same in both problems: through smooth 
hexagons, each arising from a regular hexagon by rounding off its 
corners by equal circular arcs (Figure 6). 

Recently, Heppes [10] pointed out that in the case of problem (P) 
we obtain the same solution without restricting ourselves to convex 
discs. But in the general case of problem (A) we encounter the same 
difficulties arising in problem (a). 

For convex domains the results mentioned in connection with the 
problems (a) and (p) may be generalized in another direction. We 
consider a decomposition of the Euclidean plane into convex cells. 
Let a be the area and p the perimeter of a cell. Our results [8], [4] 
concern the mean-values p/Va and a/p2 of the quotients p/y/a and 
a/p2 extended over all cells. If these mean-values exist, then 

(a) p/Va ^ 2-^12 

and 

(p) W2 ^ 1/8V3. 

If for each cell a==l or p = l, then ^ ^ 2 ^ 1 2 and d^l/Sy/3, respec­
tively, in accordance with the results mentioned above. 

The inequalities (a) and (p) are valid also for a decomposition of 
any convex hexagon into convex pieces. Since the quadratic mean is 
larger than the arithmetic mean (a) gives a lower bound for the aver­
age isoperimetric quotient of the partial domains: 

p2/a ^ 8V3. 
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This weaker inequality may be generalized in another direction [8]: 
it holds with strict inequality for the decomposition of any convex 
domain into at least two convex partial domains. To refer to related 
fields, we mention an immediate consequence of this result according 
to which a convex domain can never be packed as densely by equal 
circles as the whole plane. 

We have considered the total length of certain spherical nets. An 
interesting ramification of this problem concerns the total edge-
length of a polyhedron containing a given sphere. The discussion of 
the various results obtained in this direction and the problems to 
be solved would lead too far afield. Omitting this we turn our atten­
tion to solid tessellations. 

Besides the volume V and the surface-area 5, a convex polyhedron 
has a third fundamental gauge, the edge-curvature M defined by 

M = \ 2 , al, 

where I is the length of an edge, a the outer dihedral angle at this 
edge, and the summation extends over all edges. Therefore the iso-
perimetric problems which may be raised for tessellations are much 
more varied in space than in the plane. In the problems concerning 
solid tessellations there is also a fundamental difference between 
convex and general cells. This difference concerns not only the diffi­
culty of the solutions but the solutions themselves. We start by 
considering convex cells. 

In the "immediate" analogues of the two-dimensional problems, 
involving V and S only, the part of the regular hexagon seems to be 
taken over by the Archimedean truncated octahedron. But this is 
not always so. The following inequality [8] settles a problem the 
solution of which is dominated by the architecture of the bees. 

Consider a decomposition of the Euclidean space into convex cells. 
Let V, S and M be the volume, surface-area and edge-curvature of a 
cell and suppose that the mean-values S2/ V and M exist. Then 

irSyV ^ 6V3 M. 

We emphasize the special case of congruent cells : The three funda­
mental gauges of a convex space-filler satisfy the inequality 

irS2 ^ 6V3 MV. 

Equality holds for exactly two bodies, namely for the rhombic do­
decahedron and the trapezo-rhombic dodecahedron (which arises 
from the rhombic dodecahedron by cutting it by a plane perpendicu­
lar to an edge into two equal parts and replacing one part by the 
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image of the other part reflected in this plane). These two solids may 
be defined as polyhedra circumscribed about a sphere all dihedral 
angles of which are 120°. 

We recall the classical problem of finding the complete system of 
inequalities which hold between the fundamental gauges of a convex 
body. This exciting but extremely difficult problem, brought into 
prominence by Blaschke, is not solved completely as yet. The above 
inequality suggests the more hopeful problem for the Fedorovean (or 
perhaps for all) space-fillers. 

Now we consider the problem of decomposing the space into not 
necessarily convex cells of unit volume having the least average 
surface-area. I t can be shown that in a best decomposition along 
each edge three faces must meet under equal angles. To give this 
statement a more detailed formulation, note that from a topological 
point of view the cells are polyhedra with generally curved faces and 
edges. Thus along the edges the dihedral angle may vary from point 
to point. But in the extremal case the dihedral angles have the con­
stant value of 120°. 

Though the dihedral angles of the rhombic dodecahedron are equal 
to 120°, we know that the decomposition into truncated octahedra is 
better. On the other hand, the dihedral angles of the truncated octa­
hedron are not equal to 120°. Therefore this decomposition is not 
the best one either. In fact, Lord Kelvin showed that the truncated 
octahedron can be deformed into a nonconvex space-filler of the same 
volume but smaller surface-area. Has Lord Kelvin's solid the least 
surface-area among the space-fillers of equal volume? Or is the solid 
tessellation generated by it even the solution of the general problem 
involving incongruent cells? Our present mathematical knowledge is 
inadequate to answer these questions. 

To conclude, we mention a highly interesting result due to Heppes 
which may be interpreted as follows. If in a lather there is a bubble 
surrounded entirely by other ones then the lather contains a non-
convex bubble. The exact statement reads as follows. Let U be the 
union of n convex bodies of volume Vi, • • • , Vn. If there is a body 
lying completely in the interior of U, then U can be decomposed into 
n partial bodies of volume Vi, • • • , V» having a smaller total surface-
area than the original bodies. (To make the above interpretation clear 
we must add that such new bodies may be obtained by arbitrarily 
small variations of the original ones.) 

The ingenious proof rests on the enumeration of all spherical tes­
sellations with convex faces each angle of which is equal to 27r/3. It 
turned out that besides the four regular tessellations of this type there 
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are five irregular ones. Since the further possibilities when all angles 
are 27r/4, 27r/5, • • • yield only regular tessellations, Heppes ob­
tained, as an additional result, the enumeration of all isogonal spher­
ical tessellations with convex faces. 

Of course, the theorem of Heppes does not hold in spherical or 
hyperbolic spaces. Consider, for instance, the famous decomposition 
of the spherical space into 120 regular dodecahedra. There is no 
doubt that of all decompositions into 120 parts of equal volume the 
regular decomposition has the least total surface-area of the parts. 
Unfortunately, the proof of this conjecture involves considerable 
difficulties. 
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