LOCALLY FLAT STRINGS

BY CHARLES GREATHOUSE

Communicated by M. L. Curtis, February 4, 1964

I. The Schoenflies Theorem for strings. In [1], Stallings defines a string of type (n, k) to be a pair (R^n, Y) , where Y is a closed subset of R^n such that Y is homeomorphic to R^k . Similarly, he defines a pair (S^n, X) , where X is homeomorphic to S^k , to be a knot of type (n, k). A pair (A, X) of (n, k)-manifolds is said to be locally smooth if each point of X has a neighborhood U in A such that the pair $(U, U \cap X)$ is homeomorphic to the pair (R^n, R^k) . Thus, his definition of locally smooth is equivalent to Brown's [2] definition of locally flat.

Let (R^n, Y) be a locally smooth string of type (n, n-1); Y separates R^n into two components whose closures are A and B. In [1], Stallings states that it seems possible that either A or B must be homeomorphic to a closed half-space of R^n . Harrold and Moise [3] have proved this for n=3. In this note we observe that both A and B are closed half-spaces of R^n for n>3 and hence we have a Schoenflies theorem for strings of type (n, n-1) for n>3.

THEOREM I.1. Let (R^n, Y) be a locally flat string of type (n, n-1) and let A and B be the closures of the complementary domains of Y in R^n . Then A and B are homeomorphic to a closed half-space of R^n for n>3.

COROLLARY I.2. Let (R^n, Y) be a locally flat string of type (n, n-1) for n > 3. Then (R^n, Y) is trivial, that is, there is a homeomorphism h of (R^n, Y) onto $(R^n, R^{n-1} \times 0)$.

COROLLARY I.3. Let f_1 , f_2 be two locally flat embeddings of R^{n-1} as a closed subset of R^n for n > 3. Then there is a homeomorphism h of R^n onto R^n such that $hf_1 = f_2$.

Theorem I.1 follows immediately from a recent result of Cantrell's [4]. Cantrell showed that a knot (S^n, Y) of type (n, n-1) is trivial for n>3 provided Y is locally flat except at one point. Thus, if (R^n, X) is a locally flat string of type (n, n-1) and (S^n, Y) is the one point compactification of (R^n, X) , Y is locally flat except at the compactification point. Hence (S^n, Y) is trivial for n>3 and Theorem I.1 follows.

II. The Slab Conjecture. In this section we consider the relationship of locally flat strings of type (n, n-1) to the Annulus Conjecture. We now state the Annulus Conjecture.

II.1. The Annulus Conjecture. Let S_1^{n-1} , S_2^{n-1} be two disjoint locally flat n-1 spheres embedded in S^n . Then the submanifold M of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$ is homeomorphic to $S^{n-1} \times [0, 1]$.

Although the Annulus Conjecture is unsolved for n>3, the following theorem which is well known but does not seem to be in print holds.

THEOREM II.2. Let S_1^{n-1} , S_2^{n-1} be two disjoint locally flat n-1 spheres embedded in S^n . Then if M is the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$ and $M_i = M - S_i^{n-1}$, M_i is homeomorphic to $S_i^{n-1} \times [0, 1]$ for i = 1, 2.

PROOF. Let A_i be the closed *n*-cell [2] with boundary S_1^{n-1} such that $A_i \cap M = S_i^{n-1}$ for i = 1, 2. A_i is cellular and hence by Theorem I of [5], S^n/A_i is homeomorphic to S^n and the theorem follows.

A theorem analogous to Theorem II.2 holds for locally flat strings of type (n, n-1) for n>3.

THEOREM II.3. Let R_1^{n-1} , R_2^{n-1} be two disjoint locally flat n-1 planes embedded as closed subsets of R^n for n>3. Then if M is the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$ and $M_i = M - R_i^{n-1}$, M_i is homeomorphic to $R^{n-1} \times [0, 1)$ for i = 1, 2.

PROOF. In view of Corollary I.2, we may assume that $R_1^{n-1} = R^{n-1} \times 0$ and $R_2^{n-1} \subset R^{n-1} \times (0, \infty)$. Let A_2 be the closed half-space (by Theorem I.1) of R^n bounded by R_2^{n-1} which does not contain R_1^{n-1} . By Theorem I.1, $R^n - A_2$ is homeomorphic to R^n and hence by the same theorem M_2 is homeomorphic to $R^{n-1} \times [0, 1)$. Similarly, M_1 is homeomorphic to $R^{n-1} \times [0, 1)$.

We now state the Slab Conjecture.

II.4. The Slab Conjecture. Let R_1^{n-1} , R_2^{n-1} be disjoint locally flat n-1 planes embedded as closed subsets of R^n . Then if M is the submanifold of R^n bounded by $R_1^{n-1} \cup R_2^{n-1}$, M is homeomorphic to $R^{n-1} \times [0, 1]$.

It should be noted that the Slab Conjecture is false in dimension 3. A counterexample can be obtained as follows. Let S_1^2 be the 2-sphere boundary of a 3-cell obtained by "swelling" a Fox-Artin arc (Example 1.2) [6]. We may assume that S_1^2 is contained in the unit 3-ball B^3 of S^3 , that $S_1^2 \cap \dot{B}^3 = p$, and that S_1^2 is locally flat at each point other than p. Let $S_2^2 = \dot{B}^3$, $R_1^2 = S_1^2 - p$ and $R_2^2 = S_2^2 - p$. Then R_1^2 , R_2^2 are disjoint locally flat 2-planes embedded as closed subsets of $R^3 = S^3 - p$. The 3-dimensional Slab Conjecture would imply that the closure of the complementary domain of S_1^2 in S^3 containing R_2^2 is a closed 3-cell which is a contradiction since S_1^2 is wild in S^3 .

The Slab Conjecture is unsolved for n>3 and the following theorem indicates that it is possibly stronger than the Annulus Conjecture.

THEOREM II.5. The Slab Conjecture implies the Annulus Conjecture for n > 3.

PROOF. Let S_1^{n-1} , S_2^{n-1} be disjoint locally flat n-1 spheres embedded in S^n . In view of Brown's theorem [2], we may assume that $S_1^{n-1} = S^{n-1} =$ the equator of S^n and S_2^{n-1} lies in the northern hemisphere of S^n . Now there is a unique n-1 sphere S_{β}^{n-1} with the following properties:

- (1) S_{β}^{n-1} lies in the northern hemisphere of S^n .
- (2) S_{β}^{n-1} is concentric with S^{n-1} = the equator of S^n .
- (3) $S_{\beta}^{n-1} \cap S_{2}^{n-1}$ is not empty.
- (4) The half-open annulus bounded by $S^{n-1} \cup S_{\beta}^{n-1}$ but not containing S_{β}^{n-1} does not intersect S_2^{n-1} .

Let $p \in S_{\beta}^{n-1} \cap S_2^{n-1}$ and let D^{n-1} be the standard unit n-1 cell in S^{n-1} with center p' where p' and p lie on a great circle passing through the north pole. Let C be the cone over the base D^{n-1} with vertex p. Then $[S_1^{n-1} - \operatorname{Int}(D^{n-1})] \cup C = S_3^{n-1}$ is a locally flat n-1 sphere such that $S_3^{n-1} \cap S_2^{n-1} = p$.

If we define $R_1^{n-1} = S_3^{n-1} - p$ and $R_2^{n-1} = S_2^{n-1} - p$, then R_1^{n-1} , R_2^{n-1} are disjoint locally flat n-1 planes embedded as closed subsets of $S^n - p = R^n$. By the Slab Conjecture, the submanifold N^n bounded by $R_1^{n-1} \cup R_2^{n-1}$ in R^n is homeomorphic to $R^{n-1} \times [0, 1]$. Hence, there is a homeomorphism h of N^n onto $R^{n-1} \times [0, 1]$ where $h(R_1^{n-1}) = R^{n-1} \times 0$ and $h(R_2^{n-1}) = R^{n-1} \times 1$. Since D^{n-1} is a flat n-2 sphere in R_1^{n-1} , $h(D^{n-1})$ is a flat n-2 sphere in $R^{n-1} \times 0$. Therefore, there is a homeomorphism $R^{n-1} \times 0$ onto itself such that $R^{n-1} \times 0$ is the standard unit $R^{n-1} \times 0$ of $R^{n-1} \times 0$ onto itself by $R^{n-1} \times 0$ is a homeomorphism $R^{n-1} \times 0$ onto itself by $R^{n-1} \times 0$ is the standard unit $R^{n-1} \times 0$ is a homeomorphism of $R^{n-1} \times 0$ onto $R^{n-1} \times 0$ is the standard unit $R^{n-1} \times 0$ onto $R^{n-1} \times 0$ onto

Consider an *n*-annulus $S^{n-1} \times [0, 1] = A^n$. Let $q \in S^{n-1} \times 0$ and B^{n-1} be the unit n-1 cell in $S^{n+1} \times 0$ with center q. Let $q' = (q, 1) \in S^{n-1} \times 1$ and C' be the cone with base \dot{B}^{n-1} and vertex q'. Take F^n to be the *n*-cell in A^n with boundary $C' \cup B^{n-1}$ and let $L^n = A^n - [\operatorname{Int}(F^n) \cup \operatorname{Int}(B^{n-1}) \cup q']$.

There is a homeomorphism j of $R^{n-1} \times [0, 1]$ onto L^n such that $j(R^{n-1} \times 1) = (S^{n-1} \times 1) - q'$, $j(R^{n-1} \times 0) = [(S^{n-1} \times 0) - \text{Int}(B^{n-1})]$ $\cup (C'-q')$ and $j(S_1^{n-2}) = \dot{B}^{n-1}$. Then f = jk is a homeomorphism of N^n onto L^n such that $f(\dot{D}^{n-1}) = \dot{B}^{n-1}$. f extends uniquely to a homeomorphism of $f(D^n) = (D^n)$

phism F of $N^n \cup p$ onto $L^n \cup q'$ by taking F(p) = q'.

Finally, let M be the submanifold of S^n bounded by $S_1^{n-1} \cup S_2^{n-1}$. Since F(C) = C', F extends to a homeomorphism of M onto A^n by extending first to take D^{n-1} onto B^{n-1} and finally extending to take the n-cell bounded by $C \cup D^{n-1}$ onto F^n . Thus, M is homeomorphic to $S^{n-1} \times [0, 1]$ and the theorem is proved.

It does not seem obvious that the Annulus Conjecture implies the Slab Conjecture for n>3.

REFERENCES

- 1. J. Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490-503.
- 2. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 3. O. G. Harrold, Jr. and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2) 57 (1953), 575-578.
- **4.** J. C. Cantrell, Almost locally flat embeddings of S^{n-1} in S^n , Bull. Amer. Math. Soc. **69** (1963), 716–718.
- 5. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 6. E. Artin and R. H. Fox, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990.

University of Tennessee