INVARIANT DOMAINS FOR KLEINIAN GROUPS1

BY R. ACCOLA

Communicated by Lipman Bers, December 2, 1963

If the limit set, Σ , of a properly discontinuous group, Γ , of fractional linear transformations of the Riemann sphere, S, contains more than two points, call Γ Kleinian. Otherwise, call Γ elementary. Let $\{\Omega_i\}$ be an enumeration of the components of Ω , the set of discontinuity. If O is a domain in S, i.e., O is open and connected, let $\Gamma(O)$ be the subgroup of Γ of elements which map O onto itself. If $\Gamma(O) = \Gamma$, call O an invariant domain. If $\Gamma(\Omega_i) = \{id\}$, call Ω_i an atom

Theorem 1. If Γ possesses three disjoint invariant domains then Γ is cyclic.

THEOREM 2. Suppose Γ possesses an invariant component Ω_0 . If $0 \neq i \neq j \neq 0$, then $\Gamma(\Omega_i) \cap \Gamma(\Omega_j)$ is a nonloxodromic and nonhyperbolic cyclic group. If Ω_0 is simply connected this latter group is nonelliptic.

Theorem 3. If Γ is a Kleinian group with two disjoint invariant domains, then there exists a maximal pair of disjoint invariant domains each of which is simply connected. All noninvariant components of Ω are atoms.

The author is grateful to Leon Greenberg for pointing out how the next theorem follows from the methods used in proving the previous theorems and, essentially, from a deep theorem of Nielsen and Fenchel on Fuchsian groups.

Theorem 4. If O_1 and O_2 are a maximal pair of disjoint invariant domains for a Kleinian group, Γ , then O_1/Γ and O_2/Γ are homeomorphic surfaces.

Examples are given where (a) Ω and Σ are both connected and (b) where Γ possesses two invariant components *and* atoms.

The proofs follow from remarks of which the following are typical. (1) A closed set, invariant under Γ , contains Σ . (2) The components of the complement of a closed connected set are simply connected. (3) If O is a simply connected domain invariant under a loxodromic transformation, T, then there is a Jordan arc in O invariant under T

¹ Research supported by the Office of Naval Research.

² Added in proof. O_1 and O_2 are a maximal pair of disjoint invariant domains if whenever O_1' and O_2' are a pair of disjoint invariant domains such that $O_i \subset O_i'$, then $O_i = O_i'$ for i = 1, 2.

connecting the fixed points of T. (4) If O_1 and O_2 are disjoint simply connected domains invariant under a loxodromic T, the corresponding arcs, as in (3), divide S into two Jordan regions, one or the other of which must contain any domain disjoint from O_1 and O_2 . (5) If O is a simply connected domain invariant under an elliptic T, then O must contain a fixed point of T.

The examples are elaborations of the ideas in L. R. Ford, Automorphic functions, 2nd ed., Chelsea, 1951, pp. 55-59.

Brown University

DIFFERENTIABLE NORMS IN BANACH SPACES¹

BY GUILLERMO RESTREPO

Communicated by W. Rudin, January 20, 1964

1. Introduction. In [4, p. 28] S. Lang has asked whether or not a separable Banach space has an admissible norm of class C^1 . In this note we indicate a proof of the following theorem, which characterizes those Banach spaces for which such a norm exists.

THEOREM 1. A separable Banach space has an admissible norm of class C^1 if and only if its dual is separable.

It follows from this theorem that not even C(I) possesses an admissible differentiable norm.

2. Preliminaries. Let X be a Banach space with norm α ; we write $S_{\alpha} = \{x \mid \alpha(x) = 1\}$ and $B_{\alpha} = \{x \mid \alpha(x) \leq 1\}$. A norm in X is admissible if it induces the same topology as does α . The dual space is written X^* and the norm dual to α is denoted by α^* . An $f \in X^*$ is called a support functional to B_{α} at $x \in S_{\alpha}$ if $\alpha^*(f) = f \cdot x$; if f has norm 1, it is called a normalized support functional and is written ν_x . A norm is smooth if there is a unique normalized support functional to B_{α} at each $x \in S_{\alpha}$. The norm α is differentiable at $x \neq 0$ if there is an $\alpha'(x) \in X^*$ such that

$$\lim_{y \to x; y \neq x} \frac{\left| \alpha(y) - \alpha(x) - \alpha'(x) \cdot (y - x) \right|}{\alpha(y - x)} = 0$$

¹ Research partially supported by NSF Grant G-24471.