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Let 5 be a compact Riemann surface of genus g^2, h: S-+S an 
automorphism of order N, and H the cyclic group of order N gener­
ated by h. One has a representation of H by letting it act on the g 
complex-dimensional space A\ of abelian differentials of the first 
kind on 5 by h: <p—*ph for all <pG.Ai. At each point P £ 5 there is a 
gap sequence y(P) =7i(P), • • • , y0(P) where the 7y(P) are integers 
satisfying 1 = 7i(P) <72(P) < • • • <y0{P) <2g such that there is no 
function on S having a pole of order jj(P) at P and everywhere else 
finite. The complementary integers to y(P) in the sequence of integers 
from 1 to 2g are the nongaps at P. A point is a Weierstrass point if 
Y0(P)>g. 

In [3] the following was proved: 
(I) Suppose P = h(P) is a fixed point for h with gap sequence 

7i> • • • > 7* and that h rotates at P by e, i.e., if z is a local parameter 
at P, z{P) = 0, then h(z) = ez+ • • • , eN = 1. Then, with respect to a 
suitable basis for Ai, h is represented by the diagonal matrix (h) 
= d iag (e?i, €*», • • • , €**)• 

A corollary of this is 
(II) If P = h(P) is not a Weierstrass point then h has at most four 

fixed points. Thus if h has more than four fixed points all its fixed 
points are Weierstrass points. 

Let r be the inhomogeneous modular group, T(N) the principal 
congruence subgroup of level N>2, S(N) the compactified funda­
mental domain for T(N) which is a Riemann surface of genus g(N) 
= l+iV2(iVr--6)/24lLltf ( l~ l / £ 2 ) where the product is over primes 
dividing N. For details see Chapter 1 of [2]. T/T(N) is a group of 
automorphisms of S(N) whose fixed points are at three kinds of 
points. Firstly, parabolic points (cusps), equivalent under T/T(N) 
to 00 which is fixed under the cyclic group of order N generated by 
(the coset of) T: r—»r + l. Secondly, elliptic points of order 2, equiv­
alent to i = V~-l which is fixed under the cyclic group of order 2 
generated by S: r—> — 1/r. Thirdly, elliptic points of order 3, equiva­
lent to p = e2vilz which is fixed under the cyclic group of order 3 gener-
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ated by ST: r—>—l/(r + l ) . Equivalent points have the same gap 
sequence. Observe that the rotation at oo by T is e2*ilN, a t i by 5 is 
- 1 , a t p b y ST is p2. 

Schoeneberg [4] has shown that for N}£ 7 the cusps are Weierstrass 
points and that except for some doubtful cases but certainly for 
iVâ 13 all elliptic points are Weierstrass points. For the elliptic points 
he computes the number of fixed points for 5 and ST and one sees 
that for N>13 this number is greater than four so that the result 
follows from (II) above. The doubtful cases are precisely when the 
number of fixed points is not greater than four. 

Let iV>2, d\N, d^N, denote by F(d) the number of points on 
S(N) fixed under Td and by f(d) the number of points fixed under Td 

but not under any Te for e\d, e^d. Clearly F(d) = ^2e\df(e). Any 
cusp PE:S(N) may be written as P= U(<*>) for some U&T and is 
fixed under Td if and only if U~1TdU(<x>) = oo. But any element of 
T/T(N) of order N/d leaving oo fixed is necessarily of the form Tdr. 
Thus C / - i r d [ /= Tdr and we see that Td rotates at P by e2***'**. Thus 
F(d) is 1/2N times the number of incongruent mod N matrices of 
integers 

' -CO 
satisfying 

<» G oc : ) - ( : % > - > 
subject to 
(2) aS - 0y = 1 (mod N). 
The factor 1/2N arises because ± V are incongruent solutions which 
determine the same transformation U and for every P = U( » ) we 
have P = UTk(oo) for l^k^N. 

(1), (2) reduce to 7 = 0 (mod N/d) and a5 = a V = l (mod N/d) 
showing that a, 5 are inverse units and r a quadratic residue mod N/d, 
y mod N has d possible values, yk = k(N/d), l^k^d. (2) implies 
(a, 7*, iV) = 1 and since (7*, N) = (ft, d)iV/d we have (a, (ft, d)N/d) = 1 
so a mod (ft, d)N/d has <K(ft, d)N/d) values ($ being the Euler # func­
tion) or a mod JV has d/(k, d)<j>((k, d)N/d) values. For each permis­
sible value mod N of & and 7 there are N incongruent pairs ]8, 5 
satisfying (2), (see [2, p. 9]). Thus the number of incongruent solu­
tions of (1) and (2) is Nj2*ml <*/(*> ^)#((ft, d)N/d), which, upon col­
lecting together for 0] d the <t>{d/e) terms for which (ft, d) = e and then 
replacing e by d/e, gives 7*Xd) = § ̂ e\d ecj>(e)(l>(N/e). Of the above solu-
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tions, P = [/(<*>) is one of the f(d) points if and only if it has 
<y=~0 (mod N/d) but 7 ^ 0 (mod N/e) for every e\d,e<d. But of the 
d values of y mod N exactly <j>(d) satisfy this condition, so f(d) 
~%d4>(d)4>(N/d). It may now be observed that for N^8 there is a d 
for which F(d)^5 which by (II) implies all cusps are Weierstrass 
points. For iV= 7, jThas only 3 fixed points but the result follows from 
the gaps at <*> computed below. 

If S(N) is the orbit space of S(N) under the cyclic group of order 
N generated by T9 then S(N) has, by the Riemann-Hurwitz relation, 
genus t(N) = l + (2g(N)-2-B(N))/2N where B(N) is the total 
branch order of S(N) over $(N) which is B(N) = T,d\Nf(d)(N/d-l) 
= hHd\N<l>(d)f(N/d)(N-d). The f(d) points for T* determine ƒ (d)/d 
points P on S, and at each of the d points lying over a given P, Td 

rotates by the same amount determined by aV==l (mod N/d). As 
we have seen, the f(d) points arise from <j>(d) values of y mod N 
and for each of these 7, a mod N/d has <j>(N/d) values so that 
r mod N/d has <j>(N/d)/2Q(Nld) values, since this is the number of 
incongruent, relatively prime, quadratic residues mod N/d, where, for 
any integer n, Q(n) is the number of odd prime divisors of n plus 0, 1, 
or 2 according as 4 |» , 4| n but 8|w, or 8| n. Thus at the f(d)/d points 
P on S each quadratic residue r mod N/d occurs as the rotation by 
Td over P exactly 2^N^^"2^(d) times. 

Knowing the rotations we may apply the formula of Chevalley 
and Weil [ l ] to determine M(k), the multiplicity of e*rikiN

f O^k 
^N—l in the diagonal form for (T) representing T on Ai. In our 
case, i.e., a cyclic group, this formula can be deduced from the 
Riemann-Roch theorem and reads: M(0)*=£(N), while for l^k 
SN-1, 

* ( * ) - M O - I + Z *(4)20W)"1 2 (i-^r) 
d\N \ a / ( r ,d)=l \ » / 

Ifc^O (mod d) r s * 2 (mod <J) 

where for any integer n, [n]a is denned by n=[n]d (mod d) and 
0 ^ [«]d^d — 1 and r=x2 (mod d) means r is a quadratic residue. 

In the case of N = p, a prime, this reduces to M(0) = j>(p) 
= (p-S)(p-7)/U,îor (k/p) = l, 

J f W - | W - 1 + ^ l _ l t ( l + ( ^ ) ) . 
for ( * / / > ) - - 1 , 

jf(*)-K#)-i+ii(i+(^)), 
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where (n/p) is the Legendre symbol. Finally, if £ = 1 (mod 4), since 
((/> - n)/p) = (n/P) the above reduces to M(k) = %(p) - 1 + (p - 1 ) / 4 for 
a l l* , l=fe = # - l . 

By (I) above, M (k) is the number of gaps at 00 which are congruent 
to k mod # . Now we recall the following (proved in [3], essentially 
due to Hurwitz) : In the notation of (I), if F(h) is the number of fixed 
points of h then F(h) = 2<ri, where <Xi is the least first nongap among 
all points which are not left fixed by h. We use this as <T\ = F(d)/2 
which says that the first nongap at 00 is ^ half the number of fixed 
points of Td where Td does not leave all parabolic points fixed. Using 
these facts, and remembering that the nongaps are closed under addi­
tion, the gaps have been determined for # = 7 , 8, 9, 10, 12. For # = 11 
complete results were not obtained. In general it seems that these 
methods will give all the gaps when # is not a prime for then g(N) 
is smaller with respect to # (e.g. # = l l , g = 2 6 ; # = 1 2 , g = 25); also 
there is then a d \ N with d > 1 so that the inequality 0*1 = F(d)/2 gives 
a better estimate for <n (e.g. # = 1 1 , <ri = F ( l ) /2 = 5/2; # = 1 2 , 
o-i = ^(6)/2 = 8). 

Let [a, b] be the integers n such that a = n = b. Our results for 7(00) 
the gap sequence at 00 are: 

N= 7, g= 3, 7(00) = 1,2,4 

N= 8, g = 5, 7 ( « 0 = 1,2,3,5,9 

N= 9, g = 10, 7 («0 = [1,5], 7, 8,10,13,16 

N = 10, g = 13, 7 («0 = [1,9], 11,13,17,19 

# = 12, g = 25, 7(00) = [1,11], [13,17], 19, 21, 22, 25, 26, 29,31,37,49. 

When # = 1 1 , g = 26, I only know that [l, 12] 14, 15, 16, 20, are gaps 
while 22, 33, 35, 39, 40, 41, [43, 52] are not gaps. Thus ten gaps are 
still missing. 

Finally we point out something which may be of interest. In the 
notation of (I), we have that det (h) = e°^ where G(P) = £ X i yj(P) 
is the sum of the gaps at P . Since det (ST) =de t (S) det (T) and the 
determinant is invariant under a change of basis, we have that 

(p2)(?(p) = (-l)Qii)(e2*ilN)Otco)9 for N = 7. 

In particular when ( # , 2) = ( # , 3) = 1 this implies G(p)=0 (mod 3), 
6 ( i ) s 0 (mod 2), G(oo)==0 (mod # ) . 
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1. Introduction. The subject of the present note is closely related 
to questions treated in [6] and [7] (cf. also [8]). In §2 we state some 
results showing that certain extension properties for operators with 
a two-dimensional range imply extension properties for a much larger 
class of operators. Extension properties for operators with a two-
dimensional range are, in a sense, the weakest possible, since by the 
Hahn Banach theorem operators with a one-dimensional range can 
always be extended in a norm preserving manner. 

The results stated in §3 demonstrate the rôle of finite dimensional 
spaces whose unit cell is a polyhedron in some problems concerning 
norm preserving extension of operators. Proofs of the results stated 
here will be published elsewhere. 

I wish to express my thanks to Professor S. Kakutani for many 
valuable discussions concerning the subject of this note. 

NOTATIONS. All Banach spaces are assumed to be over the reals. 
Sx denotes the unit cell {x; \\x\\^l} of the Banach space X. By 
"cell" we mean a translate of rSx, r>0. All operators are assumed to 
be linear and bounded. 

2. Our first theorem complements the main result of [7] (cf. also 
[8, Theorem l]). 

THEOREM 1. Let X be a Banach space such that Sx has at least one 
extreme point. The following statements are equivalent. 

1 Research supported by NSF Grant No. 25222. 


