
MODELS OF COMPLETE THEORIES 

R. L. VAUGHT 

The semantical concepts, such as satisfaction, truth, and model, 
form the subject matter of a field known as the theory of models. I 
am going to discuss today several related recent developments in 
this field. They all lie in one particular area which is indicated by 
the title and which will be described more fully in a moment. How­
ever, some introductory and side remarks I shall make may also serve 
to indicate to those unfamiliar with the theory of models at least 
what some of the other areas of the field are. 

Perhaps the earliest result in the theory of models, dating from 
1915, is the theorem of Löwenheim and Skolem: Any infinite algebraic 
system has a denumerable subsystem having the same true (elementary) 
sentences. Before discussing this theorem further, we must define the 
notions involved in it. 

By an algebraic system is meant a system 21 = (| 2ï|, R%, Rf, • • • ) 
formed by a nonempty set |2ï| and finitely or denumerably many 
relations R$, Rf, • • • among the elements of 2t, each R% having a 
finite number pw of places. Thus, for example, an ordered group is a 
system (Gt < , •, e) having a binary relation, a binary operation 
(which may be regarded as a special kind of ternary relation), and a 
distinguished element (a special kind of singulary relation). A sys­
tem S3, having the same similarity type p as 21, is a subsystem of 21 if 
| S31 C j 211 and each R® is R* restricted to | S3|. The cardinal number 
of 21 (21) means that of |2l|. 

The symbols of the elementary language Lp are the sentential con­
nectives Ai V, ~ i —», <-*9 the quantifiers V, 3, the individual vari­
ables Vo, Vi, • • • , the equality symbol « , and the pn-ary relation sym­
bols 2?o, 2?i, • • • . A typical formula <f> (of Lp), taking p0 = 2, is 

Xfvi(PoVoVi V Vo « Vi), 

which has vo as its only free variable. An example of a sentence 
<r (of Lp), i.e., of a formula with no free variables, is 

3Vo\fvi(PoVoVi V Vo « tfi). 

It is clear what we mean by saying that & is true in 2Ï, or 2t is a model 
of <r ; namely, in this case, that 2t has a kind of first element. Similarly, 
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if <j> has at most v0, • • • , vn as free variables, we may say that the 
elements a0, • • • , an of j 3t| satisfy <t> in SI, meaning in the above case 
that a0 is a first element of 31. 

If £ is any class of similar algebraic systems, the theory of <£, Th «£, 
is the set of all sentences true in every member of £>. Dually if 2 is 
any set of sentences, Mod 2 is the class of all models of every member 
of 2 . A theory T is called complete if T*=Th% for some single system 
31» Henceforth " T" will always denote a complete theory, having infinite 
models. 

The similar systems 31 and 23 are called elementarily indistinguish­
able (31^23) if Th 31= Th 23. If 23 is a subsystem of 21, an even stronger 
relationship than 31^23 sometimes holds, in which any elements 
Jo, • • • , &n-i of 23 satisfy an arbitrary formula in 23 if and only if 
they satisfy it in 3Ï ; we then say that 23 is an elementary subsystem of 
2t (23 * 31). Thus if b is a first element of 23 and S & 31 then 31 has a first 
element, but b itself need not be a first element of 31, unless 23 « 31. 

With the help of these notions we now restate the Löwenheim-
Skolem theorem in a stronger form due to A. Tarski, by whom the 
notions of elementary equivalence and elementary subsystems were 
first introduced:1 

LÖWENHEIM-SKOLEM THEOREM. If X £ j 3 l | and H S K ^ S I then 
there exists 23<*2t such that XC|SB| and 23 = K . Also, if K>% then 
there exists (§> 31 such that 3 Ï ^ Ê and (J = K . 2 

This theorem illustrates well the two directions in which the theory 
of models faces. I t would obviously be classified as a theorem of gen­
eral algebra, except for the fact that it involves some metamathe-
matical notions. Actually, algebra has for a long time dealt with the 
metamathematical notions of polynomial and equation. The ele­
mentary language adds to these the sentential connectives and 
quantifiers, obtaining a much richer language, but still one so re­
stricted that various strong general results hold concerning all prop­
erties expressible in it. On the other hand, the theory of models may 
be considered as a branch of the foundations of mathematics. If we 
take for 3Ï in the Löwenheim-Skolem theorem the set of all sets or, 
more cautiously, the set of all sets of sets of sets of natural numbers, 
together with the €-relation, then we obtain the so-called Skolem 
paradox:1 there is a denumerable model for set theory, even though 
one of the valid sentences of set theory asserts the existence of a 
nondenumerable set. 

1 For references, see [33; 34] . 
* K and X always denote infinite cardinals. 
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The Löwenheim-Skolem theorem happens also to be a typical 
result of the type I want to discuss today. Each of the results I shall 
discuss establishes some fact concerning the class of all models of an 
arbitrary complete theory T, usually, the existence of a model of T 
of some special kind. Despite the fact that the class of models of a 
complete theory is, in one sense, a very general notion, with instances 
in every branch of algebra, the requirement of completeness is, in 
another sense, a very exacting one and, consequently, the classes 
Mod T have in common, as we shall see, a number of strong prop­
erties.3 

Before turning to these general results, we should have before us 
some concrete examples of complete theories. 

EXAMPLE 1. Let 2ïi=(fö, < ) be the rational numbers with their 
usual ordering. By a result of Langford,1 Mod Th 3ïi coincides with 
the class $81 of all densely ordered systems with no first or last ele­
ment. Viewed from another angle, Langford's result is that 7 \ « Th S3i 
is complete. 

EXAMPLE 2. Let §l2={C, + , •) be the field of complex numbers. 
Tarski [32 ] showed that Mod Th $2 is the class of all algebraically 
closed fields of characteristic zero. 

EXAMPLE 3. Let %**= (Rl, + , • ) be the field of real numbers. Again 
by a result of Tarski [32], Mod Th $3 is the class of all real closed 
fields. 

EXAMPLE 4. Let ?U = {Rt, + , •) be the field of rationals. We know 
no exhaustive description of Mod Th $4 and, indeed, from a result 
of Julia Robinson,1 one can probably infer that we shall never have 
such a description (cf. [33, p. 716]). 

The task of establishing that a given theory is complete is often a 
difficult one. The development of general metamathematical tech­
niques for establishing completeness and their application in particu­
lar cases (where, in each case, a special mathematical or algebraic 
study must be made) form a major area of the theory of models.4 We 
shall not discuss such problems here, except to mention one tech­
nique, which is not often applicable but, when it can be applied, is 
the easiest of all. 

The theory 7 \ = Th 5ti of Example 1 is Ro-categorical, i.e., all models 
8 For a summary of recent results in the theory of models which are concerned 

with the class of models of a (possibly incomplete) set 2 of sentences, and particularly 
with the form of the sentences in 2, see [21 ]. We shall discuss here neither results 
lying in this area nor even certain results which fall both in this area and the area We 
are dealing with, such as the theorem of Robinson [27], (For a discussion of interrela­
tions between several theorems like Robinson's and the results in §1 below, see [24].) 

* Cf., e.g., [28; 32]. 
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of Ti of power N0 are isomorphic. This fact is the well-known theo­
rem of Cantor concerning the order type 77. (The type of argument 
Cantor used will be referred to as a Cantor-type argument.) T% is 
not K-categorical for any other K. On the other hand, T^—Th %* is, 
by a theorem of Steinitz, K-categorical for every K>fc$o, but not for 
K = ^ O . The theory of algebraically closed fields of characteristic p is 
K-categorical for every K. (These examples were mentioned in [19; 
35].) As was remarked in [19; 35], it follows easily from the Löwen-
heim-Skolem theorem that any theory having only infinite models, 
which is K-categorical for some K, must be complete. 

t o e [l9] raised the question whether all theories K-categorical for 
some K exhibit one of the three patterns above, that is: 

If T is K-categorical f or some K > ^ O , must T be K-categorical f or all 
K > N O ? 

This problem turned out to be very difficult, and played a role as 
a sort of test problem which stimulated quite a bit of the work con­
cerning models of arbitrary complete theories to be discussed in §1, 
§2, and §3 below. In §4 we shall return to the problem itself. 

There are three theorems which provide the basic tools for much 
of the theory of models. One is the Löwenheim-Skolem theorem. 
Most basic of all is the Compactness Theorem, a model-theoretic 
consequence of Göd el's completeness theorem.1 (For another proof 
of the Compactness Theorem, see §6.) 

COMPACTNESS THEOREM. If every finite subset of the set 2 ' of sen­
tences has a model, so has 2 ' . 

If a»-, for iÇzI, are members of |Sï|, we denote by (2Ï, a»')«er the 
system a ' = ( | a | , R®, i?f, • • • ; a<)<er obtained by adjoining all the 
d as distinguished elements. Although we are considering throughout 
theories T with countably many symbols, an indispensable auxiliary 
role will be played by languages, like the language L'vj corresponding 
to 31', having nondenumerably many symbols. By a result of Malcev,1 

the Compactness Theorem extends to these languages. 
The third basic theorem is due to Tarski [34]: 

UNION THEOREM. The union 

u { a / a e Q} - <u {I a | / a e e}, u {R*/%eQ}, • • • > 

ofa*> -directed family Q is an elementary extension of each member of Q. 

1. Homogeneous universal models. Suppose a is a model of T of 
power K. a is called universal if every model of T of power ^ K is 
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isomorphic to an elementary submodel of 31. SI is called homogeneous 
if, whenever XQ | Slj, X </c, and (St, x)xex^ (St, /(#))*6jr, then ƒ can 
be extended to an automorphism of St. 

THEOREM 1. (a) Any two homogeneous universal models of T of the 
same power are isomorphic. 

(b) (G.C.H.)b There exists a homogeneous universal model of T in 
each power &a+i. 

Examples of homogeneous universal systems are the r)a+i ordered 
systems of Hausdorff and the rja+i real closed fields of Erdös, Gill-
man, and Hendrickson [8]. (In both of these cases, there is also 
homogeneity (and universality) in a purely algebraic sense, as the 
theories T\ and Tz are model-complete, i.e., St, S3 G Mod T and StCSQ 
implies St <* 33.6) 

Theorem 1 is due to B. Jónsson [15; 16], and M. Morley and my­
self [24]. In [15; 16], a general, purely algebraic theorem is proved 
to the effect that a class £ of relational systems which obeys certain 
postulates has one and, up to isomorphism, only one, "<£-homo-
geneous eC-universai" member of power fc$«+i. In [24] it is shown that 
for any T, the class Mod T or, rather, a certain variant of it (cf. 
[2l]) always fulfills Jonsson's postulates. In these postulates the 
notion "elementary subsystem" does not, of course, occur, but rather 
the notion "subsystem belonging to £." Roughly speaking the postu­
lates are (i) an analogue of the Löwenheim-Skolem theorem, (ii) an 
analogue of the Union Theorem, and (iii) an analogue of certain 
consequences of the Compactness Theorem. Postulate (iii) states, in 
fact, that any two members of £ can be isomorphically imbedded 
in a third and in such a way as to preserve the elements of a given 
common «C-subalgebra (embedding with amalgam). By a well known 
theorem of Schreier, the class of all groups fulfills these postulates 
(cf. [l5]). It is interesting that some of the important properties of 
the class of all groups and some of the important properties of arbi­
trary classes Mod T can be derived from the same postulates, so that 
such a result in either of the two fields can be translated into a result 
in the other. 

Theorem lb is also valid for inaccessible powers >t^o. In acces­
sible powers Nx, X a nonzero limit ordinal, a unique isomorphism 

8 This notation indicates that (b) is proved using the generalized continuum 
hypothesis. 

• The notion of model-completeness was used by A. Robinson [28] to give a shorter 
proof of the completeness of T% than Tarski's [32]. S. Kochen [l8] found a still 
shorter proof involving the rja-rea\ closed fields. 
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type can (assuming G.C.H.) still be singled out of Mod T (cf. [24]), 
though its members need not be homogeneous. Before discussing the 
case Ko it is necessary to define some notions, which will also be in­
volved in §2 and §3. 

Given an element a of | SI | , it is clearly appropriate to call the set 
Qu,a— {<t>/a satisfies <j> in 31} the (elementary) type of the element a 
{in St). The set of formulas (/> with at most v0 free forms a Boolean 
algebra Bo under disjunction, conjunction, and negation, 0 and <j> be­
ing identified if V f o ( ^ 0 ) G r = Th St. Qn,a is a dual prime ideal in 
Bo and moreover, by the Compactness Theorem, every dual prime 
ideal of B o is of this form. Thus the set of types of elements forms the 
Stone space, StoT, of Bo,7 i.e., the compact zero-dimensional Hausdorff 
space associated with Bo by Stone's well-known construction, If 
PEStoT, let P ( 3 t ) = { a / P = <2$u}. P(%) may be empty for some 
models St of P. For example, in a real-closed field all the "non-
Archimedean" elements x, such that x>l, # > 1 + 1, • • • , form a 
single type P of element [32], but the real field SÏ3 omits P , i.e., 
P(St3)=0. 

StnT ( » = 1 , 2, • > • ) is similarly defined as the space of types of 
«-tuples of elements. The disjoint union StoTVJShTU • • • is called 
StT. 

THEOREM 2 [36; 24]. T has a denumerable homogeneous universal 
model if and only if StT is countable. 

For homogeneous universal models there is an alternative char­
acterization, due in part to Keisler. Let us call a model SI of T satu­
rated if whenever -X*c|st| and X <K, the system 3t' = (3t, x)xex has 
all possible types of elements, i.e., P (3 t ' ) ^0 for every PESto Th St'. 

THEOREM 3 [17; 24; 36]. An infinite model St of T is homogeneous 
universal if and only if St is saturated. 

The results to which we now turn lie in just the opposite direction 
from saturation; they assert that models exist which omit a certain 
type or types of elements. 

2. Omitting types of elements. 

THEOREM 4. If P E StoT is not an isolated point, then T has a de­
numerable model 31 such that P(3I) = 0 . Indeed, if W is any set of the 
first category in StT, then, for some denumerable model St of T, P(3Ï) = 0 
for all PEW. 

7 This construction of Bo and St(T) is a special case of a construction outlined 
in [33]. 
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Theorem 4 originated in some work of Ryll-Nardzewski (see Theo­
rem 5 below). It was first stated explicitly, in one form, and proved by 
Ehrenfeucht (cf. [25]), and later, independently by Engeler [5], and 
Svenonius [30]. A more general form was found by myself [36], and 
the most general form (of which 4 is a version) was found by Sveno­
nius [31] and Engeler [6; 7]. 

Theorem 4 can be proved by a modification of Henkin's proof of 
the Compactness (or Completeness) Theorem [14]. To the set T of 
sentences we add the sentences 3vo<j>n(vo) —»0w(cw), justasinHenkin's 
proof. At the same time, however, we add consistently additional 
conditions 0(cn) at each step. Henkin showed that the new set of 
sentences has a model in which every element is denoted by some cn. 
Thus, by adding the 0(cw) we can try to ensure that every a G | 311 has 
a certain property (e.g., a(£P(2D). It seems to me likely that this 
general method of proof is one which has not been fully exploited. 

Theorem 4 has a number of consequences. One was the original re­
sult of Ryll-Nardzewski [29] (cf. also [5; 30]): 

THEOREM 5. T is ^^categorical if and only if for each n, StnT is 
finite. 

It is the "only if" that follows easily from Theorem 4; the "if" is 
proved by using a Cantor-type argument. 

Let us call a model St of T prime if every model of T has an ele­
mentary subsystem isomorphic to 21. Using Theorem 4 twice, to­
gether with some more Cantor-type arguments, one can prove : 

THEOREM 6 [30; 31; 36]. (a) Any two prime models of T are iso­
morphic, and each prime model is homogeneous* 

(b) 21 is prime if and only if, for any a0, • • •, an G12ï|, Q%ta0i ...,<*„ 
is an isolated point. 

(c) T has a prime model if and only if the isolated points are dense 
in StT. 

For some further consequences of Theorem 4, and a discussion of 
Theorem 4 from the point of view of languages with infinite conjunc­
tions,8 see [6; 7]. 

3. Applications of Ramsey's theorem. Ehrenfeucht and Mostowski 
[4] made the first application to general model theory of the well-
known theorem of Ramsey : if the set A(w) of all n-element subsets of 
an infinite set A is partitioned into finitely many parts Fi, • • • , F&, 

8 In the last few years a number of significant results have been obtained concern­
ing the theory of models for languages richer in one way or another than the ele­
mentary language. We shall consider throughout only the elementary language. 
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then some Yj includes the whole BM for some infinite BQA. By apply­
ing Ramsey's theorem together with the Compactness Theorem, 
while using the so-called Skolem functions, they proved the existence 
of models of T with "many" automorphisms: 

THEOREM 7. Given any ordered system (X, < ) of power K} there is a 
model St of T of power K such that XQ | St| and every automorphism of 
(X, < ) can be extended to an automorphism of St. 

Two elements a and b of a system St might be said to have the 
same absolute (as opposed to elementary) type (in 31) if for some 
automorphism ƒ of 31, f(a)=f(b). Using Theorem 7 (and its proof) 
Ehrenfeucht [3] obtained the following result: 

THEOREM 8. T has in each power K (>fc$o) a model 31 such that for 
any finite XQ\ 3l|, the system (SI, x)xex has only countably many ab­
solute types of elements. 

A fortiori, (St, x)xex has countably many (elementary) types of 
elements. Morley [23 ]9 has obtained a strengthening of this conse­
quence of Theorem 8, namely: 

THEOREM 9. T has in each power K a model St such that for any counta-
ble I C | St |, (St, x)xex has only countably many types of elements. 

It is not known whether "finite" can be replaced by "countable" 
in Theorem 8 itself. 

There are a number of natural conjectures which would strengthen 
Theorem 4 or 6. For several of these, G. Fuhrken has constructed 
ingenious counterexamples. In [lO] he showed that Theorem 4 fails 
altogether for languages with uncountably many symbols. In [ l l ; 
12], he showed that the system 31 of Theorem 4 cannot always be 
obtained as an elementary submodel of an arbitrary given model; 
and that a model of T may be minimal (have no proper elementary 
submodels) but not prime. 

The situation regarding an "upward" version of Theorem 4 is not 
yet clear. The real number field SÏ3 and the type P of non-Archi-
midean elements show that T may have a model St in power 2**° but 
no higher power with P(3t) =0. It seems likely, but is not yet estab­
lished, that the same thing can happen for cardinals >2**°. (Morley 
has constructed various examples of theories T having a model St of 
a certain power /c>2**° but no higher power in which P(3t) =0 for all 
members P of some set W.) On the other hand Theorem 8 is itself, 

9 A short summary of Morley's thesis [23] will appear soon in Proc. Nat. Acad. 
Sci., and the full thesis will be published in the near future. 
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in a sense, an upward form of Theorem 4. Many theories T have a 
continuum of types of elements. From Theorem 8 it easily follows 
that there is a countable subset W of StoT such that in each power 
there is a model of T having exactly the types of elements in W. Can 
W be described or characterized more explicitly? 

Still another result whose proof involves Ramsey's Theorem is the 
following theorem about theories categorical in power. 

THEOREM 10. If T is K-categoricalfor some K>K 0 , 2t— (-4, JÎ, • • • ) 
is a model of T, and B is an infinite subset of A then R cannot be an 
ordering of B\ more generally, if R is n-ary it cannot be that, for any 
distinct &i, • • • , bnÇzB, R holds f or some permutation of the b^s and 
fails for another. 

Theorem 10 was proved by Ehrenfeucht [2] for K = 2**a; D. Scott 
shows that K = K**° suffices; finally, Morley [23] showed that it is 
valid for any K>fc$0. 

4. Theories categorical in power /c>i$o. By combining the results 
of §§1, 2, 3, one can easily derive the two following theorems. 

THEOREM 11. If T has fewer than 2No non-isomorphic models in some 
power K (in particular, if T is K-categorical), then StT is countable [3]; 
hence T has a prime model [30; 36] and a denumerable saturated model 
[36]. 

THEOREM 12. T cannot have exactly two non-isomorphic denumerable 
models [36]. 

Examples due to Ehrenfeucht (cf. [36]) show that Theorem 12 
holds only for n = 2. 

Although a number of the results which have now been mentioned 
provide some information about a theory T categorical in some power 
K>2to, they are a long way from resolving Loé' conjecture mentioned 
earlier that such a theory must be categorical in every nondenumera-
ble power. This difficult problem was finally solved positively in the 
past year by Michael Morley, in his dissertation [22; 23].9 In fact, 
Morley established (without the G.C.H.) the stronger result (cf. 
Theorems 1 and 3) : 

THEOREM 13. If T is K-categorical f or some K>#O, then every non-
denumerable model of T is saturated. 

The beautiful proof of this result obtained by Morley is too long 
to be even roughly described here. (The improvements due to Morley, 
incorporated in Theorems 9 and 10 above, form a small but needed 
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part of the proof.) However, I shall say a few words about what is 
probably the single most essential feature of the proof. Suppose 
StGMod r , XxÇXtQlll], r i = Th(St, x)xex1 and r 2 = Th(9t, x)meXr 

Then, as Morley observed, there is a natural continuous map of 
StoT2 onto StoTi. Instead of considering only StTt Morley associates 
with T the category formed by all such maps. He applies simul­
taneously to all the spaces ShT\ a construction analogous to the 
formation of the usual transfinite sequence of derivatives or derived 
sets of a topological space. To obtain the £ + l s t "derivative" of one 
space in the category, one must know already what the fth "deriva­
tive" is for every space in the category. For this new notion of 
"derivative," Morley establishes an analogue of the Cantor-Bendix-
son Theorem. I t follows, using also Theorem 9 above, that if T is 
/c-categorical for some K>MO, then there is an ordinal £<«i , such that 
the £th "derivative" of every space in the category vanishes. (A 
theory T with the latter property is called totally transcendental, by 
an analogy with the special case in Example 2 above.) The rest of 
the proof makes use of the consequent fact that, for each T% (as 
above), every PÇzStoTi has an "order rj of transcendence," i.e., P is 
first removed in forming the 77 +1s t derivative. 

Though "totally transcendental" is a very strong property, it does 
not imply that T is categorical in nondenumerable powers. Indeed, 
from Morley's proof there does not appear to emerge any nice 
answer to the problem raised by Mostowski [25] of characterizing 
theories categorical in nondenumerable powers (cf. Theorem 5). While 
this question might have no nice answer, there are also still a number 
of unanswered yes-or-no questions concerning categorical theories, 
which have been raised by various people. For example: Suppose T 
is \^x-categorical but not ^^-categorical. 

Must T have exactly Mo nonisomorphic denumerable models? 
Can T be finitely axiomatizabWi 

5. Löwenheim-Skolem theorems for pairs of cardinals. In this sec­
tion we consider theories T such that for each model 91 of T, R® is an 
infinite subset of | 9ï|. (It would be no more general to assume U is 
the subset of | 9l| defined by some fixed formula.) I t is an easy con­
sequence of the Compactness Theorem that T has a model 51 in each 
power K with R® = 91. I t is also simple to construct a theory in all 
of whose models 91, "RQ = 9t. If T has a model 91 of power K such that 
^0 — X</c, we shall say T admits ic, X. I showed: 

THEOREM 14. If T admits K, X then T admits Mi, fc$o-

The proof of Theorem 14 (cf. [24]) uses a generalization (due partly 
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to W. Craig) of Theorem 1, which concerns models which are homo­
geneous but not universal. 

Theorem 14 leads to the general question: If T admits K, X, what 
other pairs K', X' must T admit? From the Löwenheim-Skolem theo­
rem, it follows at once that if T admits K, X and K>K!>\ then T 
admits a', X. R. Robinson constructed examples (cf. [24]) of theories 
7\, r2 , • • • such that 7\ admits exactly those pairs K, X with K ^ 2X, 
T2 those with K ^ 2 2 , etc. Assuming the G.C.H., these are the only 
negative results known. (Morley has observed that, without assum­
ing the G.C.H., a theory T can be found which admits all and only 
the pairs K a + i , H a , and that various other examples result from finite 
iteration of his and Robinson's constructions.) By using a method 
completely different from the proof of 14, Chang and Keisler [l ] have 
obtained the only other positive results known. Assuming the G.C.H., 
their results may be summarized as follows: 

THEOREM 15. (G.C.H.) Suppose T admits /c, X. Then: 
(a) If /c>X'>X, then T admits K, X'. 
(b) If cf K<cf\ then T admits 2", X. 
(c) If cf K = cf\, then T admits 2", 2 \ 1 0 

The proof of Chang and Keisler relies on a construction called the 
ultraproduct, which will be discussed in the final section, §6. 

G. Fuhrken [ i l ; 12; 13] has shown that the results or methods of 
Theorems 14 and IS can be used to obtain strong conclusions (one of 
which generalizes 14) concerning languages which involve an addi­
tional quantifier "there exist at least H« x such that ." 

As indicated above, it is an open problem whether there are other 
theorems of the form of 14 and 15. For example: if T admits Hi, HQ, 
must T admit H«+i, H« for every (some) a>0? In another direction, 
Chang raised the interesting question whether 14 can be improved 
(in analogy to the Löwenheim-Skolem theorem) as follows: does every 
model 2t of T with 7Î® 5̂  St have an elementary submodel 58 with 
33 = H i and jR|f = Ho? By using Skolem functions one easily sees 
that this problem is really purely algebraic or set-theoretical. A 
negative answer to the problem is an easy consequence of a positive 
answer to the following question : Does there exist a family W of sub­
sets of a set A of power Hi such that ÏF = H2 while, for any countable 
BQA, \XC\B/XÇzW) is countable} The latter question is a version 
of a problem raised by Kurepa in 1943 and still unresolved (cf., e.g., 
[26, p. 344]). 

19 cf. K (the character of confinality of K) is the smallest cardinal A* such that K can 
be expressed a,s^(\i/jeJ), where / , X/ <K for each je J, 
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6. Ultraproducts. The study of ultraproducts is an important chap­
ter of the theory of models, commenced by Los* [20]. It; is impossible 
to do here any justice to this extensive topic. (A detailed study of the 
basic properties of ultraproducts can be found in [9].) However, in 
this concluding section, I shall at least say what ultraproducts are, 
and will mention three results concerning them, which are directly 
related to the topics of §§S and 1. 

Suppose that W (jGJO is an indexed family of similar relational 
systems, and that F is an ultrafilter for the set / . The ultraproduct 
I I K ^ / i G J) is the system S formed as follows: I f /and g are members 
of the Cartesian product £=11(1 #y | / j G / ) , put / = F g if ƒ(/) ^ g ü ) f o r 

^-almost all jGJ, i.e., if {j/f(J)=g<j) ) EF. | <g| is the set of equiva­
lence classes ƒ ' = ƒ / = F of members ƒ of C. Similarly, if the nth rela­
tions of the 21' are, say, ternary, we can let JR^fg'h' if and only if 
R%if(j)g(j)h(j) for F-almost all j G / . 

The definition of the ultraproduct makes no reference to meta-
mathematical notions. Nevertheless, it turns out that the relationship 
involved in the definition extends to all elementary formulas. Theorem 
16, below, expresses this fact for sentences. 

THEOREM 16 [20 ]. <r is true inJXpiW/jÇzJ) if and only if <r is true 
in Wfor F-almost all j G J. 

The corresponding situation for formulas can be reduced to that 
for sentences, by means of the following easily verified fact: If f EC t 

thenJJ[p((Wtf(j))/jGJ)=(^f). From this and Theorem 16 it follows 
that , for any system SI, each uUrapower %p ~T1F(WJEJ) is isomorphic 
to an elementary extension of St. 

One can derive the Compactness Theorem from Theorem 16 (cf. 
[9]). 

The proof of each of the basic existence theorems discussed in the 
preceding sections involves, of course, a method for constructing 
models. The ultraproduct is another such method, but one distin­
guished by its generality and simplicity and, especially, by the fact 
that it is a purely algebraic construction. Moreover, the ultraproduct 
yields a new model which is closely related to the given (factor) 
models. In particular, it is easily seen that, if i ^ = £ 7 C | 2 t | , S = 3t£, 
and X = Up, then X = R$. From this fact together with the follow­
ing theorem, Chang and Keisler deduced Theorem 15 of §5. (For 
other results and problems concerning the cardinalities of ultra-
products, see [9].) 

THEOREM 17 [ l ] . If 7=X, there is an ultrafilter F for J such that, 
for any St of arbitrary power /c, %p has power K\ 
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Perhaps the deepest result which has been obtained concerning 
ultraproducts is the following theorem of Keisler [17]: 

THEOREM 18 (G.C.H.). If J = i$a then there is an ultrafilter F f or J 
such that, for any infinite systems 2t /( /£ J)> e^ch of power ^N a +i , the 
ultraproductYLFiW/jGJ) is a saturated system of power \Aa+i. 

An immediate consequence of Theorem 18 is the following corollary 
(for which Keisler [17] also gave a direct proof). 

COROLLARY 19 (G.C.H.). S t ^ S (if and) only if 31 and $8 have iso­
morphic ultrapowers. 

Corollary 19 provides a solution for an old problem of Tarski's, 
tha t of finding a purely algebraic condition which is equivalent to the 
basic relationship 21 = 33 of the theory of models. 

For ultraproducts of the power of the continuum, a much stronger 
result than Theorem 18 holds. Indeed, Keisler has shown (cf. [17], 
and also the discussion in [9] of countably complete ultrafilters) : 

THEOREM 20 (G.C.H.). If the ultraproduct £ = n K 2 t / / J G / ) is of the 
power Ni, then either S is isomorphic to one of the factors 21/ or S is 
saturated. 

From another point of view, Theorem 20 is dramatic evidence of 
the limitations of the ultraproduct. I t clearly implies that, for many 
purposes, other methods of constructing models are essential. 

Added in proof, March 26, 1963. The problem raised just after 
Theorem 9 has been answered affirmatively by J. Silver. Two more 
theorems of the form of Theorems 14 and 15 have been established, 
answering some of the questions raised in §5 : C. C. Chang has shown 
that (G.C.H.) if T admits Vîi» Nfo then T admits Vî«+i> fcî« for every 
regular &$a. Let 20=X and 2n+i = 22n. The author has shown that if, 
for every n, T admits a pair K, X such that K â 2n, then T admits every 
pair K, X (/c>X). 
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