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1. Introduction. This note is a preliminary sketch of a general 
bordism theory for the differentiable actions of a finite abelian group 
on closed manifolds. The present note is based upon the techniques 
outlined in [ l ] for the study of differentiable periodic maps. We fix 
a finite abelian group A and in A we choose a family K of subgroups. 
We assume that any subgroup of an element in K is also an element 
in K. We wish to consider all differentiable actions (^4, Bn) on com­
pact manifolds (possibly with boundary) which have the property 
that each isotropy group A x is an element of K. Two such actions are 
strictly equivalent if and only if they are connected by an equivariant 
diffeomorphism. 

We now describe the equivariant bordism theory. An action 
(Ay Mn) on a closed manifold, all of whose isotropy groups lie in K, 
is said to equivariantly bord if and only if there is an (A, J3n+1), all 
of whose isotropy groups also belong to K> for which the induced 
action on the boundary (A, dBn+1) is equivariantly diffeomorphic to 
(A, Mn). From two actions (A, Af?) and (A, Ml) a disjoint union 
action may be formed (A, M^JMZ) with M\r\Ml = 0} and with A 
restricted to Mf equal to (A, Mf) for i = l, 2. We shall say that 
04, Ml) is equivariantly bordant to {A, Ml) if and only if their dis­
joint union equivariantly bords. Again we recall that every isotropy 
group is to be a member of the family K. We have defined an equiv­
alence by introducing the equivariant bordism relation. The proof 
of transitivity is based on an equivariant collaring theorem which 
asserts that for any differentiable (A, Bn+1) there is an open invariant 
U D dBn+l and an equivariant diffeomorphism m: (A, U) 
-»C4, dBn+1X[0} 1)) for which m(x) = (xf 0), x&dBn+1, and where 
(A, dBn+lX [0, 1)) is given by a(x, t) = (a(x), /). We denote the un-
oriented bordism class of (A, Mn) by [A, Mn\i and the collection of 
all such equivalence classes by In(A ; K). An abelian group structure, 
in which every element has order 2, can be imposed on In(A\ K). 
We shall exhibit the basic fact that this is a finite group. On the weak 
direct sum I*(A; K)= ]T)<5° In(A; K) we can impose a graded right 
module structure over the unoriented Thorn bordism ring 91. For 
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each 04, Mn) and each closed Vm we define (^4, MnX Vm) by a(x, y) 
= (ce(x), y)). We define the Sft-module structure by [A, M n ] 2 [F m ] 2 

= U , MnXV™]2. 

2. Groups of bundle maps. We consider a fibre bundle 
[By X, F, G; 7r] with structure group G, a compact Lie group, which 
acts effectively from the left on the fibre F. We wish to consider an 
action of A on [5 , X, F, G; 7r] as a group of bundle maps. This means 
there are actions (A, B) and {A, X) for which w : B-+X is equivariant. 
In addition each « G i is a bundle map of [J3, X, F, G; 7r] in the sense 
of [2, p. 9] . We have studied the situation presented here in the de­
tailed exposition of the results announced in [ l ] , however we use 
here a basic approach suggested by Samelson. 

We can interpret the action of A on [B, X, F, G; w] as follows. Let 
W-+X be the principal bundle, then G acts freely on the right of W 
as the group of right bundle translations to give the right principal 
G-space (HP, G). The action of A as a group of bundle maps is then 
translated into a left action of A on W as a group of G-equivariant 
maps. We denote the resulting object by (A, (W, G)). Let HC.A 
be the subgroup of elements which map every orbit of (W, G) into 
itself. At each x G W we define a homomorphism rx: H—*G as follows. 
For each h£;H there is a unique ghÇzG with h(x)=x-gh. We set 
**(*) =£*• Using G-equivariance, fa(x - ghi) = fa(x) 'gh2 = X'ghlgh2 so that 
r* is a homomorphism. We note that for g £ G , rXQ(h) — g~lrx(Ji)g. We 
shall assume that in fact for any pair of points x, y in W that rx is 
conjugate in G to rv. If W/G = X is connected, then this condition is 
automatically satisfied. 

For each x £ W we set Sx = {y/rv = rx}. This is a closed subset of W 
which meets each orbit of (W> G). In addition Sxr\Sxg9é0 if and 
only if gÇîC(Hx), the centralizer of the image of rx in G. We obtain 
thus a right principal space (SXi C(HX)) with SX/C(HX) —X. We may 
use Sx to define a cross-section of the associated G/C(HX)-bundle, 
(WXG/C(HX))/G—>X and to thereby obtain a reduction of the struc­
ture group to C(HX). 

We fix A, a subgroup 22", and a homomorphism r: H—>G. We con­
sider all objects (-4, (W, G)) where 

(i) for any x £ TF the homomorphism r* is conjugate in G to r, 
(ii) if ce G -4 maps one orbit of (W, G) into itself then a carries 

every orbit into itself and aÇzH. 
We note that TT: W—>W/G = X naturally induces an action (A, X) 

in which H is the subgroup leaving every point of X fixed. The condi­
tion (ii) is equivalent to requiring A/H act freely on X. Two such 
objects (^4, (W, G)) and {A, (Wu G)) axe equivalent if and only if 
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W and W\ are connected by a homeomorphism which is both A and 
G-equivariant. 

Let S(r)= {y/yÇzW, ry — r] and let C(r)C.G be the centralizer of 
the image of r. The product A X C(r) acts on S(r) by y*(a, g) 
=zor1(y)-g. The subgroup A(r) = {h, r(h)}, hÇzH, acts trivially on 
S(r)> thus an action of L(r) =A X C(r)/A(r) is induced. This action is 
free, for if y • (a, g) =a~1(y)-g = y, thenaGiüTand f(a) =g# The original 
object {Ay {W, G)) can be recovered completely from the right prin­
cipal space (5(r), L(r)). 

(2.1) The equivalence classes of those objects (A, (W, G)) which con­
tain a point x at which rx = r is in natural 1-1 correspondence with the 
equivalence classes of right principal L(r)-spaces. 

We again emphasize the assumption that A/H acts freely on X. 
The quotient space of (5(r), L(r)) is X/A. We are now in a position 
to define a bordism theory for differentiable objects (A, (W> G)) with 
HCZA fixed and r: H—+G fixed. Here W is a compact differentiable 
manifold on which A and G act differentiably. The reader may de­
fine the appropriate bordism relation. We set dim [̂ 4, (W, G)\% 
= dim W/G, and denote the resulting bordism group by An(r: H-+G). 
Let B(L(r)) be the classifying space of L(r). In view of (2.1) we have 

(2.2) The bordism module A*(r\H-*G) is naturally isomorphic to 
9fc(B(L(r))). 

The bordism module of the space B(L(r)) was defined in [ l ] where 
it was noted that W*(B(L(r))~H*(B(L(r)); Z2))<g>5ft. We are espe­
cially concerned with G — 0(k), the orthogonal group, and in admis­
sible representations r: H—>0(k). A representation is admissible if 
and only if the induced action of H on Rk has the 0-vector as its only 
stationary point. We let An{H—±0(k)) = ]T)y An(rj: H—»0(fe)) where 
the sum is taken over conjugacy classes of admissible representations 
of H in 0(k). 

3. The exact sequence. We return to In(A; K). The family K is 
partially ordered by inclusion. We let HÇ:K be a maximal element 
of K and we let D be the family of subgroups of A obtained by delet­
ing H from K. Note that we do not delete the proper subgroups of H. 
A subgroup of an element in D is also in D since H was maximal. 
Obviously there is a natural homomorphism £*: In(A ; D)—±In(A ; K). 
We next define a homomorphism j * : In(A ; i£)—»^o An-k(H—*0(k)). 
We consider a differentiable action (A} Mn) on a closed manifold 
with all isotropy groups in K. We let FC.Mn be the set of stationary 
points of H. This F is the finite disjoint union of closed connected 
regular submanifolds of Mn. At each x(EF the isotropy subgroup Ax 

is H, thus A/H acts freely on F. Let Fn~k be the union of the (» — k)-
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dimensional components of F. We may regard A as a group of Rie-
mannian isometries so A acts as a group of bundle maps on the normal 
bundle to Fn~k. The subgroup H sends each normal fibre into itself 
with only the O-vector as stationary point. We may thus group the 
components of Fn~k according to the conjugacy class of the admissible 
representation of H on the normal fibres. To each such grouping we 
assign the appropriate element of An-k{rj: H~+0(k)). In this way 7* is 
defined. We shall agree that iln(iî->O(0)) = Sftn(5(i4/H)), where 
B(A/H) is the classifying space of A/H. We assign to Fn the bordism 
class of the principal A/H-bund\e Fn-*Fn/A. 

Next we define d*: J% An-k(H-+0(k))-*In-.i(A ; D). We consider 
an object {A, (W, 0(k))) with W/0(k)=Vn~k. We form a ( fe - l ) -
sphere bundle by letting 0(k) act on WXS*"1 via g(x, y) = (xg^1, gy) 
and the passing to (WXSf*-l)/0(k)-*Vn~h. The group A acts on 
(WXSk~~l)/0(k) by a(x, y) = (a(x)1 y). Since we are concerned only 
with admissible representations of H it follows that each isotropy 
group in (A, (WXSJc"1)/0(k)) is a proper subgroup of H. Thus we 
consider [A, (WXS^/Oik^Gh-iiA; D). This defines the bound-
aiya»:Si4n-*(fr^O(*))^/ . - i ( i4 ;P) .Weagreethatd«( i4 n ( f l , ->0(0))) 
= 0. 

(3.1) The sequence 

>In(A;D)^In(A;K)J^J^An^(H^O(k))^In-1(A;D)^ • • • 

is exact. 
The proof is entirely geometric. As a corollary we obtain 
(3.2) For every n^O and every family K the group In(A; K) is 

finite. 
We observe that £ S An-k(H->0(k)) is finite. If i £ = { o } , then 

7n(i l ;2Q = 8fl l l(B(i4))c-ÇHn-.y(B(i4); Z»)®Sfty. We can now use (3.1) 
to prove (3.2) by induction on the number of elements in K. 

This completes our outline. Later we shall take up special applica­
tions as well as the corresponding oriented groups. 
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