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1. Introduction. I t is known that if F i s an isometry on a (complex) 
Hubert space 9C onto a subspace R of 9C, then 

00 00 

(1.1) 9C = S ^ ( ^ ) + 0 Vk(X), 

where the two subspaces on the right-hand side are orthogonal, and 
Rx is "wandering for V," i.e. V*(R±)±V*(R1-)tJ9*k* The identity (1.1) 
closely resembles the Wold decomposition of the "present and past 
subspace" of a weakly stationary stochastic process into its "innova­
tion subspaces" and the "remote past" cf. [10, 6.10]. Interpreting k 
as the time, we shall therefore speak of (1.1) as the Wold decomposition 
of 9C due to V or (equivalently) due to the discrete semi-group ( Vh

% 

fe^O), and refer to Vk(R±)f &^0, as the innovation subspaces of 9C, 
and to n£=o Vk(X) as the remote subspace of 9C engendered by the 
semi-group. 

In this note our purpose is to obtain the analogous decomposition 
of 9C due to a strongly continuous semi-group (Sty t è 0) of isometries 
on 9C into 9C (6.5 below). We shall derive this by applying (1.1) to 
the Cayley transform V of H, where iH is the infinitesimal generator 
of the semi-group, and then replacing the direct sum J)**-o ^(R1) of 
innovation subspaces, occurring in (1.1), by a direct integral of 
"differential innovation subspaces." 

2. The associated discrete semi-group. Let (St, / ^ 0 ) be a strongly 
continuous semi-group of isometries on 9C into 9C, and let iH be its 
infinitesimal generator. Then 

(2.1) SI = StiH = iHSh on £>, t ^ 0, 

where 3D, the domain of iT, is a linear manifold everywhere dense in 
9C. From the work of J. L. B. Cooper [ l ] , (cf. also [5])3 we know that 

(a) H is maximal symmetric with deficiency index (0, a), 

1 This work was supported by the Office of Naval Research. 
2 This result, implicit in the work of von Neumann and Murray on rings of oper­

ators, is proved and put to significant use in a recent paper by Halmos [4] (cf. also [ó]). 
8 Our approach differs from Coopers in that we make systematic use of the oper­

ator Ta,b defined in (4.1), and of the deficiency subspace RL of H. 
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(b) H-\-iI is one-one on 3) onto 9C, 
1 f00 

(2.2) (c) (H+iI)~1 =— I e~lStdt is one-one and bounded on 9C onto 
i J o 

£>and | (H+il)-1] g l , 4 

(d) H~il is one-one on 3} onto a (closed) subs pace R.b 

Now let V be the Cayley transform of H: 

V = c(H) = (E - ; / ) ( # + i i ) - 1 , on 9C. 

It follows from the work of von Neumann, cf. [9, Chapter I X ] , that 

(a) V is an isometry on 9C onto R, 

ƒ» 00 

g-'Sdt on SC, 
o 

(2.3) 
(c) H = *(ƒ + V)(I - F ) ' 1 on 3D, 
(d) 5,7* = F*5« on 9C, ^ è 0, * à 0. 

We shall call (F&, fe^O) the discrete semi-group of isometries associ­
ated with the given semi-group (St> 2^0) . In the rest of §2 we shall 
formulate the basic relationship between the St and the Vk. 

The St are expressible in terms of H by the exponential formula, 
cf. [S], 

St = lim exp(tiHJn), strongly on 9C, 
n-+oo 

(2.4) 

/ 1 . V1 

w&er e Jn = il iH j . 
Since Jn is a bounded operator, so therefore is iHJn = n(Jn — I). Hence 
exp(tiHJn) has a power series expansion, from which we get the fol­
lowing expression for St in terms of Vk: 

St = ertf + lim E { ^ ("^Y È(* V'} > ^ 0 , 
n-^oo fc==1 U! \n+ 1/ y-i\J / J 

(2.5) V 2w ( it - 1 ) - 1 

Kn = <I V> V, and so Kn(X) C R9 ^ 1 , 
w + 1 I w + 1 / 

Reciprocally, we find from (2.3)(b) the following expression for Vn in 
terms of the St: 

4 The absolute value sign refers to the usual Banach norm of the operator. 
5 We will have R = 9C if and only if H is self-adjoint, which in turn will be the case 

if and only if the isometries St are actually unitary. For us this is the uninteresting 
case in which the Wold decomposition reduces to the triviality 9C =9C. 
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ƒI 00 

Lri(2t)e~tStdt, 
0 

» (-l)*/»\ r , 
Ln{t) = 2_, 1 J tk, (nth Laguerre polynomial, [8J). 

Vn = I + 2 

(2.6) 

From (2.5), (2.6) we get the following useful identity between the 
subspaces generated by the sets St(X), ^ 0 , and Vk(X), k^O: 

(2.7) ©{S«(X)}«*0 - ®{F*(X)Uo, x S 9C. 

From (2.5) we also see that 

(2.8) £«(*) = *-«* + yh yt E R, t ^ 0, x E 9C, 

and hence 

(S*(*), y) = «-«(*, y), x E 9C, y G ^ , / à O, 

(S.(*),S«(y)) = e-\°-%x, y), x, y G # x , M è O , 

where ( , ) denotes the inner product in 9C. 

3. The remote subspace. Let us write 

9 0 0 0 = 0 9C*, 9C* = H 9C*'. 

We assert the following crucial theorem : 

3.2. THEOREM. 9C00=9C'00. The restrictions of the isometries St, Vn,for 
t, w — 0, to tóe subspace 90,» are unitary. 

To prove this we first show, quite easily, that the restrictions of S* 
and Vk to the remote subspaces 90 ,̂ SC'*,, respectively, are unitary. We 
then establish the deeper result 9Coo = SC». The inclusion 9C0OÇ9C'ÛO fol­
lows without much difficulty from (2.8) and (2.3). The reverse inclu­
sion requires the following lemma, which rests on the fact that 3D is 
the range of J— V, and on the limiting behavior of Ln(t), as n—>oo, 
cf. [8, pp. 333-334]: 

LEMMA. Let £)'«, = OA^O Vk(&), where 2D is the domain of the infinitesi­
mal generator iH. Then 

(a) SD'oo is a linear manifold everywhere dense in 90», 
(b) SC C 9C* (<md! so SC', = clos. £>'«, C 9C*,). 

Let us take the Wold decomposition (1.1) of 9C due to V=c(H), 
the Cayley transform of H. As just shown PljJLo V*(9C) = 9Coo. Also, on 
taking X = RL in (2.7) we find t h a t ^ - o V\RL) = ©{ F*(i?x)} fc i0 

= ©{S«CRX) }**<>. Thus (1.1) reduces to 
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X = © { S ^ U o + 9C., © { S ^ U o J- SCoo. 

On applying SQ we get 

(3.3) Xa = ®{5e (^ )}^a + 9Coo, (a è 0), © { S ^ U o ± X„. 

We shall refer to (3.3) as the pre-Wold decomposition of Xa due to the 
semi-group (5«, t^O). Our task is to express the first subspace on the 
right-hand side as a direct integral of differential subspaces. 

4. Differential innovation subspaces. We first introduce an 
operator-valued interval-measure. The measure Tab of the interval 
[a, b], Ot^aSb, is defined by 

(4.1) Tab = Tb - Tay where T% = — <St - / - J S9ds > , * è 0. 

We see a t once tha t Tab, Tt are bounded linear operators on X into Xt 

tha t 7 \ = To*, t^O, and that 

(a) ra& + Tbc= Tac, 0 ^ a^b ^ c> 

(4.2) (b) Tab = — {^6 - 50 - ƒ S.<fcj , 0 £ a ^ b 

(c) s,r0 & = r«+«,M.«, 0 ^ a ^ J, 0 s t. 
By inverting the relations (4.1) we get the following expression for 
St in terms of the TaT: 

(4.3) St = - V2 f e*-Tufe = V2 j r < - f «*-2Vfo | . 

We consider next the sub s pace-valued interval measure: 

(4.4) Vtab= TabiR1), Org a g Ô. 

This has the following convenient properties, which are easy to check: 

(a) St(Vlab)=-Vla+t,b+t, Qûaûb, O^t; 

(b) 9da6-L9lCd, 0^a<b^c<d; 

1 
(c) Tab is an isometry on R1 onto 9la&, a<b; 

(4.5) VQ>-a) 
i.e. (TabX, Taby) = (b-a)(x, y), x, yER1; 

(d) (TV(*), r*(y)) = (7W*), r,n*(y))= | / n £ | (*, y), 
where x, yG-R-1, / , -^ are intervals and \ \ is the length. 
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From (4.5) (c) we see a t once that 

(4.6) 9lob is a (closed) subspace of 9C, and dim.9Ia&=dim.i?-L, 0^a<b. 

But it should be noted that our subspace-valued measure 9la6 is only 
subadditive, i.e. 9lacC9fta& + %c, 0 ^ a < & < c ; for, we find that 

(4.7) 9la
X

c H (%ab + $lbc) = ( Tah Tu) (R1), 
\b — a c — b / 

and the last is not {o} even when dim. R1 = 1. 
A simple but important consequence of (4.2) (b) and (4.3) is the 

identity 

(4.8) ©{S^R1)},*. = ©(91.0 «:S«<Koo» 

This identity enables us to restate the pre-Wold decomposition (3.3) 
in the form 

(4.9) 9C„ = ©{ TitiR^a^K* + 9C*, (a à 0), Tst(R
x) ± X*. 

On comparing this with the corresponding decomposition in the dis­
crete case (cf. (1.1), (3.1)), viz. 

9Cn = © { F W } * * » + SC», in à 0), V^R1) ± a£ , 

we see that the subspaces Tst(R
L) have taken the place of the "innova­

tion subspaces" Vk(R±)^ This fact along with the properties (4.5) (b), 
(4.6) justifies our calling Tst(R

L), 0^s<t, the differential innovation 
subspaces of 9C engendered by the semi-group (St} t^O). 

Now in the discrete case we have the direct sum representation: 

®{V*(R±)}M = E F H ^ ) , 

where, by definition, 

£ Vk(RL) = U:t = £ V\xk), xk G R1 & Z I ** I2 < * } . 

This suggests that in the continuous case we should have an analogous 
direct integral representation : 

ƒ• 0 0 

TatiR1), 
0 

where 

J^T^R1)^ U:Z = f9°Tdt(xt)yxteR1&f \xt\Ht < «ol . 
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This heuristic reasoning can be put on a sound footing by defining 
precisely the vector-valued integral foTdtixu occurring in the last 
equation. This is done in §§5, 6 below. 

5. Generalized vector-valued integrals. Let ^([a, b], R1) be the 
Hubert space of all strongly (Lebesgue) measurable functions x on 
[a, b] with values Xt&R1- such that Jb

a\xt\
2dt< 00.6 Our task is to 

define JlTdt(xt) so that it will behave like a vector sum ]C*«m "̂ *(#*)> 
where XkCzR1. This suggests that we define it so as to ensure the fol­
lowing properties: for all functions x} y, x(n)ÇzLï([a, b]t Rx), 

(a) ( ƒ Tdt(xt), ƒ TM^ = ƒ (xt, yt)dt, 

(b) I f Tdt(xt)\ = f |*,|»<«, 

ƒ* b /• o /» 0 

Tdt(cxt + dyt) = c I 7*0*,) + d I ^«(y,), 
a ^ a J a 

(d) I Z\»(ff* ) —> I Tdt(%t), when x(n) —> x in the L^-topology. 
J a J a 

The requisite definition consists of two parts, one for step-functions 
x and the other for arbitrary x in L2( [&, &], ̂ x ) : 

5.2(a). DEFINITION. For tóe step-function x= X X 1 ° W * ÖW t a » ^1» 
where a ^ G ^ 1 &wd %/* ^5 the indicator-function of the bounded interval Jk 
we define JlTdt{xt) = X£=i Tjk(ak). 

I t follows from (4.S) that this definition is unequivocal and that the 
laws (5.1)(a)-(c) hold when x and y are step-functions. Moreover, 
for any Cauchy-sequence of step-functions x(n) in L2([a, b]> R1) we 
have 

rd«(flP« ) - I Tdt(xt ) = 1 I xt - xt I A -> 0, 
o *•' a I "̂  a 

as ra, w—*oo. This relation and the well-known fact that the step-
functions are everywhere dense in L2{[a, b], R1) suggest the following 
extension of our definition: 

5.2(b). DEFINITION. For any x£L 2 ( [ a , b], RL), we define JlTdt(xt) 
= limn^oo JaTcitix^), where (x(n), n>l) is any sequence of step-functions 
tending to x in the Lr-topology. 

I t is easy to check that our definition is again unequivocal, and 

6 Cf. [3, Chapter III, §6]. According to their Theorem 6, Z,2([a, b], Rx) is a Banach 
space. With the inner product (x, y) = fa(xlt yt)dt, it is obviously a Hubert space. 
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that the laws (5.1) hold without restriction. Moreover, as an interval-
function the integral is seen to have the following properties: 

/

» b /» c /» c 

Tdt(xt) + I Tdtfa) = I Tufa), 0^a<b<c, 
a J b J a 

(b) I Tdt(%t) J- I Tdtiyt), J, K non overlapping, 
J j J K 

(c) ( f Tdt(xt), f Tdt(yt)) = f («i, y«)#, 
\J J JK / J JDK 

U
b \ /» &+c 

r*(*#)> = J Tds(xs-C). 
From (5.1) and (5.3) we see that our vector-valued integral has 

properties akin to those possessed by stochastic integrals.7 To see the 
precise relationship between the two concepts, consider the function 
xt = c(t)a, where a^R1 and c(-) is a complex-valued function in 
L2[a, b], and let ^t=Tt(a). Then it follows easily that the process 
(£*, t^O) has orthogonal increments, and 

Tdt{c(t)a\ = I c(t)d£t (stochastic integral). 
a J a 

This shows that our notion of vector-integration subsumes that of sto­
chastic integration, but reduces to the latter when and only when dim. RL 

= 1. 

6. The direct integral. We can now define our direct integral as a 
set of vector-valued integrals : 

(6.1) ƒ Tdt(R
L) = U: É = ƒ Tdt(xt), x G £.([a, 6], #x) j , 

where 0 ^ a < & . By (S.l)(c), (d) this integral is a (closed) subspace 
of X. Indeed, (5.1) enables us a t once to assert the following theorem: 

6.2. THEOREM. The correspondence x—*flTdt(xt) is an isomorphism 
on the Hilbert space Lï([a, b], R-1) onto the subspace f%Tdt(RL) of 9C, 
0^a<b. 

From (5.3) we see, moreover, that as an interval-function our 
7 Such integrals were introduced in probability theory by Wiener, Cramer and 

Doob. They also occur in Hilbert space theory when spectral integrals fac(\)dE\t 

where (E\, a^X^&) is a resolution of / , are applied to vectors. Cf. [2, Chapter IX, 
§2], and [9, Chapter VI, §2]. 
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direct integral has the following convenient properties: 

(a) f Tam + (CTdt(R
L) = ÇCTdt(R

L), 0^a<b<c, 

(b) I TdtiR1) JL I Tdt(R
x), / , K nonoverlapping, 

(6.3) Jj J K 

(c) f TatiR1) Ç f rd((-Rx), JQK, 

(d) $ . {ƒ V„(2^)} =f""T«m. 
a+c 

We can also show that 

n / r» I \ /?r( Ti / T» I \ 
Ja£(r<T<&» (6.4) ƒ rdf(^) = ©{raT(^)}c 

This relation with 6 = 00 together with (4.9) yields the result we had 
set out to prove : 

6.5. THEOREM (WOLD DECOMPOSITION). Let (St, t^O) be a strongly 
continuous semi-group of isometries on 9C into 9C, iH be its infinitesimal 
generator and V the Cayley transform of H. Then for a jjj£ 0 

/

» 00 / » CO 

Tttifr) + 9CM, I TttiR*-) ± 9Coo, 
a ^ 0 

where R = V(X) and a ^ n ^ o S*(9C). 
From this decomposition we can readily obtain Cooper's theorem 

that our semi-group can be embedded in a unitary group acting on a 
larger Hilbert space [l , p. 841]. 

Our direct integral does not bear any obvious relation to the direct 
integral fl3Ztdn(t) due to von Neumann and others, cf. [7], in which 
Xt is a Hilbert space and /x a complex-valued measure. Our integral 
could be written in the form /a

&d9l*, on letting 91* = Tot{RL)y cf. (4.4). 
But the significant factor in its definition is the family of operators 
Tot and not the family of subspaces 91*, cf. Definitions 5.2(a), (6.1). 
I t would seem that this integral is the tool needed for the study of 
the isometric representations of continuous semi-groups, just as the 
von Neumann integral is the tool required to deal with the unitary 
representations of continuous groups. 
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