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1. Introduction. Our object is to prove the following theorem: 

THEOREM. Let M be a contractible manifold of dimension m. 
(A) If M has empty boundary, then MXRp ^Rm+P for some p. 
(B) If M is compact, then MXDq ^Dm+qfor some q. 

For a bound on p and q, see §4. 
Here D{ denotes the closed unit disk in Euclidean i-space R\ and 

X ~ 7 means X is homeomorphic to Y. Our manifolds are not as­
sumed to have any differential or combinatorial structures unless 
this is explicitly indicated. Throughout the paper M denotes a mani­
fold of dimension m, dM is the boundary of M, and int M= M—dM. 

2. Proof of (A). The analog of (A) for combinatorial manifolds 
is due to McMillan [4]. In view of this, to prove (A) it suffices to 
establish that MXRJ is homeomorphic to an open subset of Rm+3' for 
some j . The following result of Curtis and Lashof [3 ] is used for this 
purpose. 

(C) Let UC.MXM be a neighborhood of the diagonal Let <£: U~-±Rm 

be a map such that for all y (EM, 4>(y, y) = 0 and <f>\ Uyis one-one, where 
Uy= UPi(MXy). Then MXR1' can be embedded in Rm+ifor some f. 

In the terminology of Milnor's theory of microbundles, the exist­
ence of <p is equivalent to the triviality of the tangent microbundle of 
M. In his paper [S], Milnor deals with combinatorial microbundles, 
but as he points out, much of the development applies to the topo­
logical case. In particular, it is true that homotopic maps induce 
equivalent microbundles. Therefore the tangent microbundle of a 
contractible manifold is trivial. Thus (C) may be used to complete the 
proof of (A). 

3. Proof of (B). If M is contractible so is int M, Thus (A) applies 
to int M, and to prove (B) it suffices to demonstrate the following. 

(D) Let M be contractible. If (int M) XRk ~Rm+k, then MXDk+l 

The proof depends on some work of M. Brown. 
(E) For any M, there is a neighborhood of dM in M homeomorphic to 

(dM) XD\ 
This is proved in [2]. 
Put 5n~"x = dDn = unit sphere in Rn. 
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(F) Let ƒ: Sn~l—>Rn be an embedding. If there is a neighborhood N of 
5 n _ 1 in Rn and an extension of g to an embedding of N, then g can be 
extended to an embedding of Dn. 

This is proved in [ l ] and in [ó], 
(G) Let M be a compact manifold covered by two open sets A\ and 

A2i with A1~A2~Rm. Then M~Sm. 
This is due to Stallings [lO], and follows easily from (F). 
Next we deduce some simple consequences of these theorems. First, 

for a manifold M, define the double of M to be d(MXDl), and denote 
it by 2M. I t is clear that 2M is homeomorphic to two copies of M 
identified along dM. 

(H) Let M be a compact manifold with int M^Rm. Then 2M^Sm. 
PROOF. This is easily proved using (E) and (G). 
(I) Suppose int M~Rm and dM^Sm~l. Then M^Dm. 
PROOF. Follows easily from (E) and (F). 
PROOF OF (D). Assume now that M is compact and contractible, 

and that (int M) XRk ^Rm+k. Then we have 
(J) int (MXDk)~R™+k; 
(K) int (MXD*+l)**K"+*+\ 
From (J) and (H) we get 
(L) d(MXDkXDl)~Sm+k+\ 
Now by combining (I), (K), and (L), we see that MXDk+1^Dm+k+l, 

which proves (D). 

4. A bound for p and q. A bound for the dimensions p and q ap­
pearing in (A) and (B) can be found as follows. The j in (C) is equal 
to the dimension of a Euclidean space in which M is embedded as a 
neighborhood retract. Thus in (C), j^2m + l. We can avoid a further 
Euclidean factor by applying results due to Stallings [9] in place of 
McMillan's theorem; these results imply that MXRj~Rm+i. There­
fore: 

(M) In (A) we may take p^2m + l. In (B) we may take q^2m-{-2. 

5. Analogs. The differential analog of (A) follows from the com­
binatorial one [4] and uniqueness of compatible differential structures 
on contractible combinatorial manifolds, proved by Munkres [7]. 
The combinatorial and differential analogs of (B) are easy conse­
quences of difficult theorems of Smale [8]. 
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