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results for operators not assumed positive by means of a reduction 
procedure [4] and the present theorems. 

We are indebted to the work of Eberhard Hopf for suggesting that 
a resolution of this type is possible. 
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INFINITE INTERVAL1 
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The purpose of this announcement is to state a theorem on Tcheby-
cheff quadrature which answers a question posed in [ l ] , and to dis­
cuss the proof. Complete details will appear elsewhere. 

1. Tchebycheff quadrature. 
DEFINITION 1.1. A unit mass distribution on (— oo, oo) possessing 

moments of all positive integer order will be said to belong to class D. 
DEFINITION 1.2. Let \p be an element of D and n a positive integer. 

We refer to the equations 

]C %i,n = I #*#, k = 1, • • • , n 
n M J 

as the equations (\p, n). These equations admit a solution xi,n, • • • , 
xn,n which is unique up to permutation of the first index. 

DEFINITION 1.3. T quadrature is said to be possible for an element 
\p of D if equations (\p, n) have real solutions for every positive integer 
w. If T quadrature is possible for \p it is called a T distribution. 

1 This research was supported in part by National Science Foundation Grant No. 
G19654. 
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LEMMA 1.1 [l ]. The mass set of a T distribution lies on a finite inter­
val. 

DEFINITION 1.4. T\ quadrature is said to be possible for an element 
yp of D if the equations (^, n) do not have real solutions for every 
positive integer n, but do have real solutions for an infinite number 
of positive integers. If 7\ quadrature is possible for \[/ it is called a 7\ 
distribution. The values of n for which equations (yp, n) have real 
solutions are called the T set of \p. If either T or T\ quadrature is pos­
sible for \p in D, we say Tchebycheff quadrature is possible. 

We are now led to the question raised in [ l ] , namely, is there a T\ 
distribution whose mass does not lie on a finite interval, or in other 
words, is Tchebycheff quadrature possible on the infinite interval? 
Evidence is produced there that this is not so, since it is shown that 
if a 7\ distribution exists whose mass does not lie on a finite interval, 
its T set would have very large gaps. 

THEOREM 1.1. There is a T\ distribution whose mass does not lie on 
a finite interval. 

2. Discussion of proof. Lemmas are stated here but not proved. 
Comments are added which will indicate how the theorem is proved. 

DEFINITION 2.1. A simple distribution of degree n is a unit mass 
distribution consisting of equal masses a t n distinct points. 

DEFINITION 2.2. Let \p, \j/' be two elements of D, and let mk, mi 
denote the moments fxkd\p, fxkd\pf

1 respectively, k — 1, • • • . Let n be 
a positive integer. Then 

II* ~ *1I» 
is defined as 

max{ J nti — m[ | , • • • , | mn — mn \ } . 

LEMMA 2.1. Let \pbea simple distribution of degree n. There is a num­
ber €>0 , called a proximity number of \p, such that if 

where \pf is any element of D, then the equations (^', n) have n distinct 
real solutions. 

LEMMA 2.2. There is an element \p of D whose mass is not contained 
in a finite interval, and an infinite sequence of simple distributions \pu of 
degree nu and with proximity numbers €*, k = 1, • • • , where the nu tend 
to infinity, such that 

(2.1) ||*-*JLsS*, * = ! , • • • . 
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COMMENT 1. The condition (2.1) implies that equations (^, m) 
have real solutions for k= 1, • • • , so that \[/ is a 2 \ distribution. 

LEMMA 2.3. Let {0»}, i = l , • • • , èe a family of nonoverlapping, 
finite intervals on the real axis whose union does not lie in a finite inter­
val. There is a sequence of simple distributions \pk of degree nk and prox­
imity numbers ek, k— 1, • • • , where nk tends to infinity, such that 

(2.2) f dfa+p è T i > 0 , k - 1, • • • , p = 0, • • • , 

and 

(2.3) \\fa+P ~ fa\\nk ^ €*, k = 1, • • • , p = 1, • • ' . 

COMMENT 2. From the ^ we can extract a sequence whose limit \}/ is 
in D. This distribution \[/ and the fa of this lemma satisfy the condi­
tions of Lemma 2.2. The mass of x// is not on a finite interval because 
of (2.2), and (2.3) leads to (2.1). 

COMMENT 3. In constructing the sequence fa we proceed in a step­
wise fashion, constructing 1/̂ +1 from fa in two stages, fa has all its 
mass on the sets 0i, • • • , 0&. We move some mass from Ok to O^+i, 
thus creating a mass distribution ip£. We then split each mass of 
yp£ into a number of equal masses, locating them close to the mass 
in which they originated. This can be done so that fa+\ is simple and 
has all its mass on 0i, • • • , 0&+i. 
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