results for operators not assumed positive by means of a reduction procedure [4] and the present theorems.

We are indebted to the work of Eberhard Hopf for suggesting that a resolution of this type is possible.

BIBLIOGRAPHY

- 1. R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160.
- 2. R. V. Chacon, The influence of the dissipative part of a general Markov process, Proc. Amer. Math. Soc. 11 (1960), 957-961.
 - 3. ——, Identification of the limit of operator averages, J. Math. Mech. (to appear).
 - 4. ——, Convergence of operator averages, (to appear).

Brown University

TCHEBYCHEFF QUADRATURE IS POSSIBLE ON THE INFINITE INTERVAL¹

BY J. L. ULLMAN

Communicated by J. L. Doob, May 29, 1962

The purpose of this announcement is to state a theorem on Tcheby-cheff quadrature which answers a question posed in [1], and to discuss the proof. Complete details will appear elsewhere.

1. Tchebycheff quadrature.

Definition 1.1. A unit mass distribution on $(-\infty, \infty)$ possessing moments of all positive integer order will be said to belong to class D.

DEFINITION 1.2. Let ψ be an element of D and n a positive integer. We refer to the equations

$$\frac{1}{n}\sum_{i=1}^{n}x_{i,n}^{k}=\int x^{k}d\psi, \qquad k=1,\cdots,n$$

as the equations (ψ, n) . These equations admit a solution $x_{1,n}, \dots, x_{n,n}$ which is unique up to permutation of the first index.

DEFINITION 1.3. T quadrature is said to be possible for an element ψ of D if equations (ψ, n) have real solutions for every positive integer n. If T quadrature is possible for ψ it is called a T distribution.

¹ This research was supported in part by National Science Foundation Grant No. G19654.

Lemma 1.1 [1]. The mass set of a T distribution lies on a finite interval.

DEFINITION 1.4. T_1 quadrature is said to be possible for an element ψ of D if the equations (ψ, n) do not have real solutions for every positive integer n, but do have real solutions for an infinite number of positive integers. If T_1 quadrature is possible for ψ it is called a T_1 distribution. The values of n for which equations (ψ, n) have real solutions are called the T set of ψ . If either T or T_1 quadrature is possible for ψ in D, we say Tchebycheff quadrature is possible.

We are now led to the question raised in [1], namely, is there a T_1 distribution whose mass does not lie on a finite interval, or in other words, is Tchebycheff quadrature possible on the infinite interval? Evidence is produced there that this is not so, since it is shown that if a T_1 distribution exists whose mass does not lie on a finite interval, its T set would have very large gaps.

Theorem 1.1. There is a T_1 distribution whose mass does not lie on a finite interval.

2. **Discussion of proof.** Lemmas are stated here but not proved. Comments are added which will indicate how the theorem is proved.

Definition 2.1. A simple distribution of degree n is a unit mass distribution consisting of equal masses at n distinct points.

DEFINITION 2.2. Let ψ , ψ' be two elements of D, and let m_k , m_k' denote the moments $\int x^k d\psi$, $\int x^k d\psi'$, respectively, $k=1, \cdots$. Let n be a positive integer. Then

$$||\psi - \psi'||_n$$

is defined as

$$\max\{\mid m_1-m_1'\mid,\cdots,\mid m_n-m_n'\mid\}.$$

LEMMA 2.1. Let ψ be a simple distribution of degree n. There is a number $\epsilon > 0$, called a proximity number of ψ , such that if

$$\|\psi - \psi'\|_n \leq \epsilon,$$

where ψ' is any element of D, then the equations (ψ', n) have n distinct real solutions.

LEMMA 2.2. There is an element ψ of D whose mass is not contained in a finite interval, and an infinite sequence of simple distributions ψ_k of degree n_k and with proximity numbers ϵ_k , $k = 1, \dots$, where the n_k tend to infinity, such that

$$||\psi - \psi_k||_{n_k} \leq \epsilon_k, \qquad k = 1, \cdots.$$

COMMENT 1. The condition (2.1) implies that equations (ψ, n_k) have real solutions for $k = 1, \dots$, so that ψ is a T_1 distribution.

LEMMA 2.3. Let $\{0_i\}$, $i=1, \dots$, be a family of nonoverlapping, finite intervals on the real axis whose union does not lie in a finite interval. There is a sequence of simple distributions ψ_k of degree n_k and proximity numbers ϵ_k , $k=1, \dots$, where n_k tends to infinity, such that

(2.2)
$$\int_{0}^{\infty} d\psi_{k+p} \geq \gamma_k > 0, \qquad k = 1, \dots, p = 0, \dots,$$

and

COMMENT 2. From the ψ_k we can extract a sequence whose limit ψ is in D. This distribution ψ and the ψ_k of this lemma satisfy the conditions of Lemma 2.2. The mass of ψ is not on a finite interval because of (2.2), and (2.3) leads to (2.1).

COMMENT 3. In constructing the sequence ψ_k we proceed in a stepwise fashion, constructing ψ_{k+1} from ψ_k in two stages. ψ_k has all its mass on the sets $0_1, \dots, 0_k$. We move some mass from 0_k to 0_{k+1} , thus creating a mass distribution ψ_k' . We then split each mass of ψ_k' into a number of equal masses, locating them close to the mass in which they originated. This can be done so that ψ_{k+1} is simple and has all its mass on $0_1, \dots, 0_{k+1}$.

References

1. H. S. Wilf, The possibility of Tchebycheff quadrature on infinite intervals, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 209-213.

University of Michigan