INERTIA THEOREMS FOR MATRICES: THE SEMI-DEFINITE CASE

BY DAVID CARLSON AND HANS SCHNEIDER1

Communicated by A. S. Householder, June 4, 1962

1. The *inertia* of a square matrix A with complex elements is defined to be the integer triple In $A = (\pi(A), \nu(A), \delta(A))$, where $\pi(A)$ $\{\nu(A)\}$ equals the number of eigenvalues in the open right $\{\text{left}\}$ half plane, and $\delta(A)$ equals the number of eigenvalues on the imaginary axis. The best known classical inertia theorem is that of Sylvester: If P>0 (positive definite) and H is Hermitian, then In PH=In H. Less well known is Lyapunov's theorem [2]: There exists a P>0 such that $\mathfrak{R}(AP) = \frac{1}{2}(AP+PA^*)>0$ if and only if In A=(n,0,0). Both classical theorems are contained in a generalization (Taussky [4], Ostrowski-Schneider [3]) which we shall call the

MAIN INERTIA THEOREM. For a given A, there exists a Hermitian H such that $\Re(AH) > 0$ if and only if $\delta(A) = 0$. If $\Re(AH) > 0$, then In $A = \operatorname{In} H$.

2.1. In this note we consider the case $\Re(AH) \ge 0$ which is far more complicated than the case $\Re(AH) > 0$. We do not here solve the problem of all the possible relations of In H to In A, except under additional assumptions.

THEOREM 1. Let A be a given matrix for which all elementary divisors of imaginary eigenvalues are linear. If H is a Hermitian matrix such that $\Re(AH) \ge 0$, then $\pi(H) = \pi$, $\nu(H) = \nu$ satisfy

(1)
$$\pi \leq \pi(A) + \delta(A), \quad \nu \leq \nu(A) + \delta(A),$$

respectively, and

(2)
$$\operatorname{rank} \, \mathfrak{R}(AH) \leq \pi(A) + \nu(A).$$

Further, for any triple (π, ν, δ) for which $\pi+\nu+\delta=n$, and π, ν satisfy (1), there exists an H for which $\Re(AH) \ge 0$ and $\operatorname{In} H = (\pi, \nu, \delta)$. Thus (1) is in a sense the best possible inequality.

A more precise result may be proved if rank $\Re(AH) = \pi(A) + \nu(A)$.

2.2. Theorem 2 concerns a matrix consisting of just one Jordan

¹ The research of the authors was supported by the National Science Foundation under grant No. NSF G-19052 and by the United States Army under Contract No. DA-11-022-ORD-2059.

block with one imaginary root. Its proof is largely computational. For assertion (4) (below) we use Cauchy's theorem on the separation of eigenvalues of a Hermitian matrix by the eigenvalues of a principal minor.

THEOREM 2. Let $A = \alpha I + U$, where α is pure imaginary and U is the matrix with 1 in the first superdiagonal and 0 elsewhere. If H is Hermitian of rank r and $K = \Re(AH) \ge 0$ is of rank s, then

$$(3) 2s \leq r,$$

and for $\pi(H) = \pi$, $\nu(H) = \nu$,

$$|\pi - \nu| \leq 1,$$

(5)
$$h_{ij} = 0$$
 if $i + j > r + 1$,
(6) $k_{ij} = 0$ if $i > r/2$.

$$(6) k_{ij} = 0 if i > r/2.$$

Again, the inequalities (3) and (4) are best possible, in the sense that if r, s, π , ν , with $\pi + \nu = r$, are non-negative integers satisfying (3) and (4) then we can find an H such that $\Re(AH) \ge 0$, and $r = \operatorname{rank} H$, $s = \text{rank } \Re(AH), \pi = \pi(H) \text{ and } \nu = \nu(H).$

As a corollary of Theorem 2 we obtain a general existence theorem:

COROLLARY. For any matrix A, there exists a nonsingular Hermitian H such that $\Re(AH) \geq 0$.

In the special case that all elementary divisors of imaginary roots are linear, this result is known; cf. Givens [1].

2.3. THEOREM 3. Let A be a given matrix. If $H \ge 0$ and $\Re(AH) \ge 0$. then

(7)
$$\operatorname{rank} H \leq \pi(A) + p(A),$$

where p(A) is the number of elementary divisors of imaginary roots. The inequality (7) is best possible.

Corollary 1. For a given matrix A, there exists an H>0 for which $\mathfrak{R}(AH) \geq 0$ if and only if

$$\nu(A) = 0,$$

(9) all elementary divisors of imaginary eigenvalues of A (if any) are linear.

COROLLARY 2. If $\Re(A) \ge 0$ and H > 0 then all elementary divisors of imaginary eigenvalues of AH are linear.

When H=I, Corollary 2 reduces to part of Theorem 2 of [3].

3.1. The proof of the Main Inertia Theorem hinges on the following lemma: If $\Re(AH) > 0$, then H is nonsingular. In this section we shall obtain a generalization of the Main Theorem by considering matrices with fixed null-space \Re . By $\Re(A)$ we shall denote the null-space of $A(x \in \Re(A): Ax = 0)$ and \Re^1 will be the orthogonal complement of $\Re(x \in \Re^1: y * x = 0)$ for all $y \in \Re$). Our results depend on the easily proved Theorem 4 which takes the place of the lemma quoted above.

We define In $A \leq \text{In } B$ if $\pi(A) \leq \pi(B)$ and $\nu(A) \leq \nu(B)$ (A, B need not be of the same order), and In <math>A = In B if $\pi(A) = \pi(B)$ and $\nu(A) = \nu(B)$.

THEOREM 4. If $\Re(AH) \geq 0$ then

(10)
$$\mathfrak{N}(\mathfrak{R}(AH)) \supseteq \mathfrak{N}(H),$$

$$(11) A\mathfrak{N}(H)^{\perp} \subseteq \mathfrak{N}(H)^{\perp},$$

(12)
$$\operatorname{In}(A \mid \mathfrak{N}(H)^{\perp}) \leq \operatorname{In} H.$$

Here $A \mid \mathfrak{N}(H)^{\perp}$ is the restriction of A to $\mathfrak{N}(H)^{\perp}$. As an immediate corollary to the proposition we have

Corollary. If
$$\Re(AH) \ge 0$$
 and $\operatorname{In}(A^* \mid \Re(H)) = (0, 0, \delta)$ then

In
$$A = \operatorname{In}(A \mid \mathfrak{N}(H)^{\perp}) \leq \operatorname{In} H$$
.

In particular if $\Re(AH) \ge 0$ and H is nonsingular, then $\operatorname{In} A \le \operatorname{In} H$.

3.2. It is interesting to note that in our next theorem, the inequalities will go in the opposite direction. This theorem reduces to the Main Inertia Theorem when $\mathfrak{N} = (0)$.

Theorem 5. Let $\mathfrak A$ be a subspace of V. There exists a Hermitian H such that

$$\mathfrak{R}(AH) \ge 0,$$

and

$$\mathfrak{N}(\mathfrak{R}(AH)) = \mathfrak{N}(H) = \mathfrak{N},$$

if and only if

$$(15) A\mathfrak{N}^{\perp} \subseteq \mathfrak{N}^{\perp}$$

and

$$\delta(A \mid \mathfrak{N}^{\perp}) = 0.$$

If (13) and (14) hold, then

In
$$H = \operatorname{In}(A \mid \mathfrak{N}^{\perp}) \leq \operatorname{In} A$$
.

COROLLARY 1. Let A and \mathfrak{A} satisfy conditions (15) and (16). If $\mathfrak{R}(AH) \geq 0$ and $\mathfrak{N}(H) \supseteq \mathfrak{N}$, then In $H \leq \operatorname{In}(A \mid \mathfrak{N}^{\perp}) \leq \operatorname{In} A$.

COROLLARY 2. If $\delta(A) = 0$ and $\Re(AH) \ge 0$, then In $H \le \text{In } A$. If, in addition, $\delta(H) = 0$ (i.e., H is nonsingular), then In H = In A.

COROLLARY 3. If $\Re(AH) \ge 0$ and rank $\Re(AH) = \operatorname{rank} H = \pi(A) + \nu(A)$, then, again, $\operatorname{In} H = \operatorname{In} A$.

3.3. Suppose the conditions of Theorem 5 are fulfilled and there exists a K such that $\mathfrak{R}(AK) \geq 0$, and $\mathfrak{N}(\mathfrak{R}(AK)) = \mathfrak{N}(K) = \mathfrak{N}$, A and \mathfrak{N} being given. When does every H satisfying $\mathfrak{N}(\mathfrak{R}(AH)) = \mathfrak{N}$ (and not necessarily satisfying $\mathfrak{R}(AH) \geq 0$) also satisfy $\mathfrak{N}(H) = \mathfrak{N}$? For $\mathfrak{N} = (0)$, the question is: When does $\mathfrak{R}(AH) = 0$ imply H = 0?. The conditions for this are well-known (Corollary below). Thus our Theorem 6 is a generalization of the known Corollary 6.

We require the following definition. If A and B are square matrices (possibly of different orders), we let

$$T(A, B) = \prod_{i,j} (\alpha_i + \beta_j)$$

the product being taken over all pairs of eigenvalues (α_i, β_j) of A and B, and for the sake of convenience we write $T(A) = T(A, A^*)$. If A is the empty matrix (an operator on a 0-dimensional space), certain consistency conditions force us to take T(A, B) = 1.

Theorem 6. Let $\mathfrak N$ be a subspace of V, and A a matrix for which $A\,\mathfrak N^\perp\subseteq\mathfrak N^\perp.$ If

(17)
$$T(A \mid \mathfrak{N}^{\perp}, A^* \mid \mathfrak{N}) \cdot T(A^* \mid \mathfrak{N}) \neq 0$$

then $\mathfrak{N}(\mathfrak{R}(AH)) \supseteq \mathfrak{N}$ implies $\mathfrak{N}(H) \supseteq \mathfrak{N}$. Conversely, if

(18)
$$T(A \mid \mathfrak{N}^{\perp}, A^* \mid \mathfrak{N}) \cdot T(A^* \mid \mathfrak{N}) = 0$$

then there exists a Hermitian H such that $\mathfrak{A}(\mathfrak{A}(AH))\supseteq\mathfrak{A}$ but $\mathfrak{A}(H)\supseteq\mathfrak{A}$.

COROLLARY 1. There exists a nonzero H such that $\Re(AH) = 0$ if and only if T(A) = 0.

COROLLARY 2. Let $\mathfrak{R}(AH) \geq 0$ and let $\mathfrak{N} = \mathfrak{N}(\mathfrak{R}(AH))$. If $A \mathfrak{N}^{\perp} \subseteq \mathfrak{N}^{\perp}$ and (17) holds then $\mathfrak{N}(\mathfrak{R}(AH)) = \mathfrak{N}(H)$.

COROLLARY 3. Let $\Re(AK) \geq 0$ and $\Re=\Re(K)=\Re(\Re(AK))$. If (17) holds, then $\Re(AH) \geq 0$ and $\Re(\Re(AH))=\Re$ implies that $\Re(H)=\Re$. Conversely if (18) holds, then there exists a Hermitian H such that $\Re(AH) \geq 0$ and $\Re(\Re(AH))=\Re$ but $\Re(H)$ is properly contained in $\Re(AH)$

4. As in [3], the matrix A is called H-stable if, for Hermitian matrices H, In AH = (n, 0, 0) if and only if H > 0. A necessary and sufficient condition for H-stability was found in [3], Theorem 4. However, this condition does not greatly facilitate the determination of H-stability for a given matrix A. Our Theorem 7 below provides an effective test for H-stability. The only candidates are nonsingular A with $\Re(A) \ge 0$, and thus we need merely diagonalize $\Re(A)$ and examine the transform of $\Im(A) = (1/2i)(A - A^*)$.

THEOREM 7. Let A be a nonsingular matrix with $\mathfrak{R}(A) \geq 0$, and let $k = \max_{H>0} \delta(AH)$. Let S be any nonsingular matrix for which $S^*AS = A' = P + iQ$, where $P = P_{11} \oplus 0$ and Q are Hermitian, and $P_{11} > 0$. If Q is partitioned conformably with P, then rank $Q_{22} = k$. In particular, A is H-stable if and only if $Q_{22} = 0$.

COROLLARY. If A is an H-stable matrix of order n, then rank $\Re(A) \ge n/2$.

REFERENCES

- 1. W. Givens, Elementary divisors and some properties of the Lyapunov mapping $X \rightarrow AX + XA^*$, Argonne National Laboratory Report ANL-6456, 1961.
- 2. A. Lyapunov, Problème géneral de la stabilité du mouvement, Comm. Soc. Math. Kharkov (1892); Annals of Mathematics Studies, No. 17, Princeton Univ. Press, Princeton, N. J., 1947.
- 3. A. M. Ostrowski and H. Schneider, Some theorems on the inertia of general matrices, J. Math. Anal. Appl. 4 (1962), 72-84.
- 4. O. Taussky, A generalization of a theorem by Lyapunov, J. Soc. Indust. Appl. Math. 9 (1961), 640-643.

University of Wisconsin