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1. The inertia of a square matrix A with complex elements is de­
fined to be the integer triple In A = (ir(A), V(A), 8(4)), where ir(A) 
{v(A)} equals the number of eigenvalues in the open right {left} 
half plane, and 8(A) equals the number of eigenvalues on the imagi­
nary axis. The best known classical inertia theorem is that of Sylvester : 
If P > 0 (positive definite) and H is Hermitian, then In PH=ln H. 
Less well known is Lyapunov's theorem [2 ] : There exists a P > 0 such 
that (R(AP) = i(AP+PA*)>0 if and only if lnA = (n, 0, 0). Both 
classical theorems are contained in a generalization (Taussky [4], 
Ostrowski-Schneider [3]) which we shall call the 

M A I N INERTIA THEOREM. For a given A, there exists a Hermitian H 
such that (&(AH)>0 if and only if ô ( ^ ) = 0 . If &(AH)>0, then 
InA^InH. 

2.1. In this note we consider the case 6i(AH) §:0 which is far more 
complicated than the case (R(AH) > 0 . We do not here solve the prob­
lem of all the possible relations of In H to In A, except under addi­
tional assumptions. 

THEOREM 1. Let A be a given matrix for which all elementary divisors 
of imaginary eigenvalues are linear. If H is a Hermitian matrix such 
that (&(AH) è 0 , then ir(H) = TT, V(H) =V satisfy 

(1) T g w(A) + 0(A), v £ v(A) + t(A), 

respectively, and 

(2) rank <5L(AB) ^ v(A) + v(A). 

Further, for any triple (T, V, 8) for which w+v + ô^n, and ir> v satisfy 
(1), there exists an H f or which 6i(AH) ^ 0 and In H— (w, v, 8). Thus 
(1) is in a sense the best possible inequality. 

A more precise result may be proved if rank (R(AH) =T(A)+P(A). 

2.2. Theorem 2 concerns a matrix consisting of just one Jordan 
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block with one imaginary root. Its proof is largely computational. For 
assertion (4) (below) we use Cauchy's theorem on the separation of 
eigenvalues of a Hermitian matrix by the eigenvalues of a principal 
minor. 

THEOREM 2. Let A—OLI+U, where a is pure imaginary and U is the 
matrix with 1 in the first superdiagonal and 0 elsewhere. If H is Her­
mitian of rank r and K= (R(AH) ^ 0 is of rank s, then 

(3) 2s S r, 

and for ir(H) = 7r, V(H) = v, 

(4) | T - H ^ 1 , 

(5) *<y=0 ifi+j>r+l, 

(6) kij = 0 if i > r/2. 

Again, the inequalities (3) and (4) are best possible, in the sense that 
if r, s, 7T, v, with T+v = r, are non-negative integers satisfying (3) and 
(4) then we can find an H such that (R(AH)^0f and r = r a n k i ï , 
5 = rank (R(AH), T = TT(H) and v = v(H). 

As a corollary of Theorem 2 we obtain a general existence theorem : 

COROLLARY. For any matrix A, there exists a nonsingular Hermitian 
H such that (R(AH) ^ 0 . 

In the special case that all elementary divisors of imaginary roots 
are linear, this result is known; cf. Givens [ l ] . 

2.3. THEOREM 3. Let A be a given matrix. If H^O and (R(AH) ^ 0 , 
then 

(7) rank H ^ T(A) + p(A), 

where p(A) is the number of elementary divisors of imaginary roots. The 
inequality (7) is best possible. 

COROLLARY 1. For a given matrix A, there exists an H>0 for which 
(R(AH) ^ 0 if and only if 

(8) v(A) = 0, 

(9) all elementary divisors of imaginary eigenvalues of A (if any} are 
linear. 

COROLLARY 2. If (R(A) ^ 0 and H>0 then all elementary divisors of 
imaginary eigenvalues of AH are linear. 

When H=I, Corollary 2 reduces to part of Theorem 2 of [3]. 
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3.1. The proof of the Main Inertia Theorem hinges on the follow­
ing lemma: If (${(AH)>0, then H is nonsingular. In this section we 
shall obtain a generalization of the Main Theorem by considering 
matrices with fixed null-space 91. By ?fl(A) we shall denote the null-
space of 4 ( x G 9 l ( i ) : Ax = 0) and 911 will be the orthogonal comple­
ment of 9l(#G9l 1 : y*x = 0 for all y G 91). Our results depend on the 
easily proved Theorem 4 which takes the place of the lemma quoted 
above. 

We define In A S In B if w(A) ér(B) and v(A) ^v(B) (A, B need 
not be of the same order), and In A = I n B if 7r(̂ 4) =7T(JB) and v(A) 
= v{B). 

THEOREM 4. If 6i(AH)^0 then 

(10) 9l((R(,4H)) 2 91(A), 

(11) .491(H)1 C 91(H)1, 

(12) In(il | 91(H)1) = In H. 

Here A | 91(H)1 is the restriction of A to 91(H)1. 
As an immediate corollary to the proposition we have 

COROLLARY. If Gi(AH)^0 and In (A*\ 91(H)) = (0, 0, 8) then 

InA = In(A | 91(H)1) £ In H. 

Jw particular if (R(AH) ^ 0 awd H is nonsingular, then In 4̂ ̂ I n H. 

3.2. I t is interesting to note that in our next theorem, the inequali­
ties will go in the opposite direction. This theorem reduces to the 
Main Inertia Theorem when 91= (0). 

THEOREM 5. Let 91 be a sub space of V. There exists a Hermitian H 
such that 

(13) <5L(AH) è 0, 

and 

(14) °fl((R(AH)) = 91(H) = 91, 

if and only if 

(15) ^ 9 l 1 C 9 l 1 

and 

(16) Ô(A | 911) = 0. 

If (13) and (14) hold, then 

I n H = InC4| 911) g In A. 
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COROLLARY 1. Let A and 91 satisfy conditions (15) and (16). If 
(R(AH)^0and 91(21)391, then In H£In(A\ 911) $ I n A. 

COROLLARY 2. /ƒ d(A) = 0 awd (R(42ï) = 0, /Aw In 2ï = In 4 . /ƒ, in 
addition, 8(22) = 0 (i.e., 22^'s nonsingular), //*ew In 22"= In 4 . 

COROLLARY 3. /ƒ (R(422")^0 and rank <R(4H) = rank LT=7r(4) 
+v(A), theny again, In 2?= In A. 

3.3. Suppose the conditions of Theorem 5 are fulfilled and there 
exists a K such that (R(42£) = 0, and 9l((R(42£)) = 91(25:) = 91, 4 and 
91 being given. When does every H satisfying 91(01(421)) = 91 (and 
not necessarily satisfying (R(422)^0) also satisfy 91(22") = 91? F ° r 

91= (0), the question is: When does (R(422")=0 imply 21=0?. The 
conditions for this are well-known (Corollary below). Thus our Theo­
rem 6 is a generalization of the known Corollary 6. 

We require the following definition. If A and B are square matrices 
(possibly of different orders), we let 

T(A, 22) = Ü («< + ft) 

the product being taken over all pairs of eigenvalues (a*, ft) of A and 
Bf and for the sake of convenience we write r ( 4 ) = T(A, A*). If A 
is the empty matrix (an operator on a 0-dimensional space), certain 
consistency conditions force us to take T(A, B) = 1. 

THEOREM 6. Let 91 be a subspace of V, and A a matrix for which 
49l J -C9l J \ If 

(17) T(A | 9lx, A* | 91) • T(A* | 91) ^ 0 

then 9l((R(42ï))29l implies 91(22)13 91. Conversely, if 

(18) T{A | 91-S 4 * | 91) - 7X4* | 91) = 0 

tóe?* tóere existe a Hermitian H such that ïfl((R(AH))'D%but 91(22)3291. 

COROLLARY 1. There exists a nonzero H such that (R(422) = 0 if and 
only if r ( 4 ) = 0 . 

COROLLARY 2. Let (R(AH) = 0 and let 91= 91(01(42?)). /ƒ 49 l J -Ç9l 1 

awd (17) fto/tfs tóéw 9l((R(42J)) = 9l(2ï). 

COROLLARY 3. Le* (R(42£)è0 and 9l=9l(2£) = 9l((R(42£)). If (17) 
Ao&fc, tóen (R(422)=0 and 9l((R(42ï)) = 9l implies that 91(22) = 91. 
Conversely if (18) AoMs, tóen tóere existe a Hermitian H such that 
(R(422) jgO and 9l((R(42ï)) = 91 but 91(22) is properly contained in 91. 
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4. As in [3], the matrix A is called H-stable if, for Hermitian 
matrices H, In AH=(n, 0, 0) if and only if H>0. A necessary and 
sufficient condition for ü-stabili ty was found in [3], Theorem 4. 
However, this condition does not greatly facilitate the determination 
of jff-stability for a given matrix A. Our Theorem 7 below provides 
an effective test for iJ-stability. The only candidates are nonsingular 
A with (R(A)^O, and thus we need merely diagonalize Gi(A) and 
examine the transform of ó(A) = (l/2i)(A —.4*). 

THEOREM 7. Let A be a nonsingular matrix with 6i(A) è 0 , and let 
fe = maxJff>o d(A H). Let S be any nonsingular matrix f or which S*AS 
= A' =P+iQ, where P = Pu®0 and Q are Hermitian, and P n > 0 . If 
Q is partitioned conformably with P, then rank Q22 = k. In particular, A 
is Hstable if and only if (?22 = 0. 

COROLLARY. If A is an H-stable matrix of order n, then rank (R(A) 
è » / 2 . 
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