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1. Introduction. In [ l ] we studied the set 0^ of power series 
Zn« i dnZn convergent for \z\ <Ry0<R^l, under the multiplication 

( ]C anzA( JC bnzA = Z ( Z arb8jz\ 

It was found that Ct̂ , with the usual addition and scalar multiplica­
tion, and with the topology of uniform convergence on compact sub­
sets of the disk \z\ <R, is a locally convex algebra with identity. Also 
]C£-i anZn is invertible (has an inverse in (XR with respect to the above 
multiplication) if and only if a ^ O . As a consequence we obtained 
the following expansion theorem for analytic functions (E. Hille 

[2]). 
THEOREM. Let f(z) be analytic f or \z\ <R, 0<R^1, with / ( 0 ) = 0 . 

Then associated with any function g(z) analytic in \z\ <R with the 
properties g(0) = 0, g'(0) F^0, there is a unique expansion of the f or m 

ƒ « = Ê ^ w , \A <R. 

Our object in this paper is to obtain an analogous result for Laplace-
Stieltjes integrals (Theorem 1 below). We shall base the discussion 
on the theory of convolution algebras of complex measures on [0, 00) 
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as described in [3]. More precisely, we shall need the adaptation of 
this theory to the multiplicative semi-group [l, oo). 

2. Convolution algebras depending on a weight function. In this 
section we record as Proposition 1 the appropriate modifications of 
the needed portions of [3], 

PROPOSITION 1. Let cj>(t) be a real-valued Borel measurable f unction 
defined on [l , oo) satisfying 

(1) 0 < <t>(hh) S <Ktd4>(ti), h, h à 1; *(1) = 1. 

Let (B be the ring of bounded Borel subsets of [l , oo), and let S(<j>) denote 
the set of complex measures a on (B such that 

/

CO 

4>(t)d\ a | (/) < oo. 

Finally let 

(3) [ab](B) = [a X b]({(x, y) \ xy G B, x ^ 1, y à l} ) ; 

a,b G S O ) , £ G ( B . 

Then S(cj>) is a commutative Banach algebra with norm defined by (2), 
with multiplication defined by (3), with the obvious definitions of addi­
tion and scalar multiplication, and with identity defined by a unit mass 
at 1. Let 

(4) co = inf{log <K0/log t\t> 1}. 

ƒƒ c o= — oo, then a is invertible if and only if a{{ 1})T^O, aG<S(<£). 

PROOF. Let (B' be the ring of bounded Borel subsets of [0, oo). Let 
the function <£' be defined by 4>'{t) =<£(ee)> t^O. Then <j>f satisfies the 
requirements given in [3 ] for a weight function for the additive semi­
group [0, oo). Hence the set S'($') of complex measures on (B' with 
finite <£'-norms is a commutative Banach algebra with identity de­
fined by a unit mass at 0. The proof of this statement, given in [3], 
can readily be adapted to S{<j>). Let us, however, note that S'{<f>f) 
and S(<i>) are isomorphic. Indeed, the exponential function provides 
an isomorphism of the underlying semi-groups with preservation of 
bounded Borel sets B'<->B. This induces the one to one correspondence 
of measures 

(5) a' <-* a, a'{Bf) = a(B)\ a' G S'(<*>'), a G S{<j>), Bf G CB', B G (B, 

and this correspondence preserves addition, scalar multiplication, 
convolution, total variation, and norm. Therefore S(<j>) is a Banach 
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algebra as described. To prove the last assertion we note that 
co = inf{log (t>'(t)/t\t>0}. The assertion now follows from Theorem 
4.18.5 of [3] and the isomorphism (5). 

3. The special case <f>a(t) =e-<r(t-1\ a>0, and Laplace-Stieltjes 
transforms. We have for tlf / 2 ^ 1 

and it is clear that 0ff is a suitable weight function for [l, 00 ). Further­
more 

log <l><,(t)/log t = — <r(t — l)/log t —> — 00 as t —» 00 . 

Therefore we have the following result. 

PROPOSITION 2. 5(0,) is a Banach algebra of the type described in 
Proposition 1. The invertible elements a of S(cj>ff) are characterized by 
the condition a( {1} ) y£0. 

We can now establish the representation theorem alluded to in the 
Introduction. 

THEOREM 1. Let a>0. Let 

ƒ 00 /» 00 

e-8tda(t), g(s) = I e-8tdb(t), Re s ^ <r, 
where a and b are complex measures on (B, and the integrals are absolutely 
convergent. Then 

(7) esg(s) ->*({!}) ™ Re s -> «>. 

ƒƒ /jb's Ziwwï is WÖ£ sertf, there is a complex measure c on (E swcfe £te£ 

/» 00 

(8) ƒ(*) = { g(st)dc(t)y Res^a, 

the integral converging absolutely. 

PROOF. For Rester we have e8g{s)^jie-8^-x)db{t). But e-*"-» 
~~*Xii)Q) a s Re s—» oo. Thus we obtain (7) by Lebesgue's dominated 
convergence theorem. By (6), a, b £ 5(0,) , and by Proposition 2 and 
our assumption regarding (7), 6 is invertible. Hence there is a unique 
c(~S(<l>ff) such that a = bc. From this equation and the basic definition 
(3) we conclude 

ƒ» 00 / I 00 ƒ • 00 

e~8tda{t) = I I e~8XH[b X c](x, y), Re s ^ <r. 
l J l J l 
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By the Fubini theorem this equation implies (8). 

4. Remarks. If the integrals in (6) are absolutely convergent in 
an open half-plane Re s>p, p^O , then for every or > p there is a meas­
ure cff such that (8) holds. To show that c9 is independent of a we 
reason as follows, a and b belong to the set of measures 5P = fï<r>P 5(0,) . 
In each algebra *!>($,), <r>p, b has an inverse, but since these algebras 
are linearly ordered by inclusion, all these inverses are the same. Thus 
b~l exists in 5P. But then c = b~la also belongs to 5P. Hence we have a 
single formula (8) holding in the given half-plane Re s>p. The set 
Sp is the analog of the set Ct̂  of power series. Like ®R, 5 P is a com­
plete, countably-normed algebra. 

In the representation (8) of / (s) , we have regarded g as having 
been given, and c as having been determined. We can reverse the 
situation and choose any c subject to the condition C ( { I } ) T ^ 0 . The 
equation a —be is then uniquely solvable for b in the appropriate 
algebra. (8) now follows as before, g being the transform of &. 
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