TWO APPLICATIONS OF THE METHOD OF CONSTRUCTION BY ULTRAPOWERS TO ANALYSIS

BY W. A. J. LUXEMBURG¹
Communicated by A. Erdélyi, February 7, 1962

1. Introduction. Recently, A. Robinson in [1] has given a proper extension of classical analysis, which he called nonstandard analysis. His theory is based on the general metamathematical result that there exist nonstandard models for the system R of real numbers. Such models of R may be constructed in the form of ultrapowers as defined by T. Frayne, D. Scott, and A. Tarski in [2]. The object of this paper is to apply Robinson's method in order to obtain a new proof of the Hahn-Banach extension theorem and in order to give a new and simple proof of a result about the existence of certain measures on Boolean algebras which was recently obtained by O. Nikodým in [3; 4].

It may be of interest to the reader to point out that the use of non-standard arguments in the proof of the Hahn-Banach extension theorem eliminates the use of Zorn's lemma. In fact, the validity of the Hahn-Banach extension theorem is a consequence of the apparently weaker hypothesis that every proper filter is contained in an ultrafilter, i.e., the prime ideal theorem for Boolean algebras. It seems likely, that conversely the Hahn-Banach extension theorem implies the prime ideal theorem for Boolean algebras.

A more detailed presentation of the subject of this announcement will be contained in lecture notes on nonstandard analysis under preparation by the author.

2. Nonstandard models of R. Let R denote the real number system. Let D be an arbitrary set and let $\mathbb U$ be an ultrafilter on D. If A and B are two mappings of D into R, i.e., A, $B \in D^R$, then we say that $A \equiv_{\mathbb U} B$ if and only if $\{n \colon n \in D \text{ and } A(n) = B(n)\} \in \mathbb U$. The relation $A \equiv_{\mathbb U} B$ is easily seen to be an equivalence relation. The set $D^R/\mathbb U$ of all equivalence classes will be denoted by R^* and the equivalence class of a mapping A of D into R will be denoted by a. Thus $A \in a$. Finally, we define the algebraic operations in R^* as follows: a+b=c if and only if there exist elements $A \in a$, $B \in b$ and $C \in c$ such that $\{n \colon n \in D \text{ and } A(n) + B(n) = C(n)\} \in \mathbb U$; and a similar definition

¹ Work on this paper was supported in part by National Science Foundation Grant No. G-19914.

for ab = c and $a \le b$. With these definitions R^* is a totally-ordered field and $R \subseteq R^*$. If $R \neq R^*$, then R^* is non-archimedean and is a nonstandard model of R. In this case the following two subsets are introduced. M_0 is the set of all $a \in \mathbb{R}^*$ such that |a| < r for some $r \in \mathbb{R}$. Then M_0 is a ring and the elements of M_0 are called the finite elements of R^* . M_1 is the set of all $a \in R^*$ such that |a| < r for all $r \in R$ and r > 0. The elements of M_1 are called infinitesimals. Furthermore, M_1 is a maximal ideal of M_0 and M_0/M_1 is isomorphic to R. The homomorphism of M_0 onto R with kernel M_1 will be called "standard part" and will be denoted by st. If $a \in M_0$, then st(a) is the unique real number which is infinitely close to a. This homomorphism is order preserving.

The terminology used in this section is taken from [1].

3. The Hahn-Banach extension theorem. In this section we shall sketch a proof of the Hahn-Banach extension theorem using nonstandard arguments.

THEOREM (HAHN-BANACH). Let E be a real linear space and let p be a sublinear functional defined on E, i.e., a mapping p of E into R such that $p(x+y) \leq p(x) + p(y)$ for all $x, y \in E$ and p(tx) = tp(x) for all $x \in E$ and all real $t \ge 0$. If f is a real linear functional defined on a linear subspace G of E such that $f(x) \leq p(x)$ for all $x \in G$, then there exists a real linear functional F on E such that F(x) = f(x) for all $x \in G$ and $F(x) \leq p(x)$ for all $x \in E$.

PROOF. Let $\{f_n: n \in D\}$ be the family of all linear functionals which are defined on some linear subspace of E which contains G and which have the following properties: $f_n(x) = f(x)$ for all $x \in G$ and $f_n(x) \leq p(x)$ for all $x \in E$ for which $f_n(x)$ is defined. It is evident that $D \neq \emptyset$. For every $x \in E$ we denote by D_x the set of all indices $n \in D$ such that the domain of f_n contains x. It follows from Banach's proof (see [5, p. 28]) that $D_x \neq \emptyset$ for all $x \in E$. Furthermore, the family $\{D_x : x \in E\}$ of subsets of D has the finite intersection property, i.e., if x_1, \dots, x_n are elements of E, then $\bigcap_{i=1}^{n} D_{x_i} \neq \emptyset$. Indeed, apply Banach's construction successively to the elements x_1, \dots, x_n . Hence, there exists an ultrafilter \mathfrak{U} on D which contains the family $\{D_x: x \in E\}$. Let R^* be the ultrapower D^R/\mathfrak{U} . Then we define the following mapping \tilde{f} of E into R*. If $x \in E$, then $\tilde{f}(x)$ is that element of R* which is determined by an element A of D^R such that $A(n) = f_n(x)$ for all $n \in D_x$. Then it is easy to see that \tilde{f} is a linear transformation of E into R^* (consider R^* as a vector space over R) and that \tilde{f} has the following properties: (i) $\bar{f}(x) = f(x)$ for all $x \in G$ and (ii) $\bar{f}(x) \leq p(x)$ for all $x \in E$.

From (ii) it follows that $-p(-x) \le \tilde{f}(x) \le p(x)$ for all $x \in E$, i.e., $\tilde{f}(x)$ is finite for all $x \in E$. Hence, $F(x) = \operatorname{st}(\tilde{f}(x))$ is the required linear functional. This completes the proof of the theorem.

REMARK. The proof shows that the ultrafilter $\mathfrak U$ is fixed, i.e., there exists an element $n \in D$ such that $\{n\} \in U$. Furthermore, there exists a one-to-one correspondence between the family of all ultrafilters on D containing the family $\{D_x : x \in E\}$ and the family of all extensions of f satisfying the conditions of the theorem.

4. A theorem of Nikodým. Let B be a Boolean algebra. It is well-known that there does not always exist on B a strictly positive real-valued finitely additive measure. Therefore, the following result, which was recently obtained by O. Nikodým in [3; 4], is of interest.

THEOREM (O. NIKODYM). For every Boolean algebra B there exists a totally ordered field F which is in general non-archimedean such that B admits a strictly positive F-valued finitely additive measure.

PROOF. Let B be a Boolean algebra and let $\{\mu_n: n\in D\}$ be the collection of all real-valued measures on B such that $\mu_n(1)=1$ for all $n\in D$. For every $0\neq a\in B$ we denote by D_a the set of all $n\in D$ such that $\mu_n(a)\neq 0$. It is well known that $D\neq \emptyset$ for all $0\neq a\in B$ (Stone's Theorem). Hence, the family of sets $\{D_a: 0\neq a\in B\}$ has the finite intersection property. Let $\mathbbm{1}$ be an ultrafilter on D which contains the family $\{D_a: 0\neq a\in B\}$. Let F be the ultrapower $D^R/\mathbbm{1}$. Then F is a totally-ordered field, $R\subseteq F$ and $R\neq F$ if and only if F is non-archimedean. We define now the following mapping $\mathbbm{1}$ of B into B. If $0\neq a\in B$, then $\mathbbm{1}$ (a) is that element of B which is determined by the element $A\in D^R$ which has the following property: $A(n)=\mu_n(a)$ for all $B\in D_a$; and we define $B\in D_a$ 0 if and only if $B\in D_a$ 1 is strictly positive and (ii) $B\in D_a$ 2 if and only if $B\in D_a$ 3 is strictly positive and (iii) $B\in D_a$ 4 is completes the proof of the theorem.

REMARK. If B does not admit a strictly positive real-valued finitely additive measure, then the totally-ordered field F constructed in the proof of the preceding theorem is a proper extension of R and hence, $\mu(a)$ is infinitesimal for at least one element $0 \neq a \in B$.

REFERENCES

A. Robinson

 Non-standard analysis, Nederl. Akad. Wetensch. Proc. Ser. A 64 (1961) = Indag. Math. 23 (1961), 432-440.

1962] THE METHOD OF CONSTRUCTION BY ULTRAPOWERS TO ANALYSIS 419

- T. E. Frayne, D. S. Scott and A. Tarski
 - 2. Reduced products, Notices Amer. Math. Soc. 5 (1958), 673.

O. Nikodým

- 3. On extension of a given finitely additive field-valued, non-negative measure, on a finitely additive Boolean tribe, to another tribe more ample, Rend. Sem. Mat. Univ. Padova 26 (1956), 232-327.
- 4. Sur la mesure non archimédienne effective sur une tribu de Boole arbitraire, C. R. Acad. Sci. Paris 251 (1960), 2113-2115.

S. BANACH

5. Théorie des opérations linéaires, Warszawa, 1932.

CALIFORNIA INSTITUTE OF TECHNOLOGY