
TWO APPLICATIONS OF THE METHOD OF CONSTRUCTION 
BY ULTRAPOWERS TO ANALYSIS 

BY W. A. J. LUXEMBURG1 

Communicated by A. Erdélyi, February 7, 1962 

1. Introduction. Recently, A. Robinson in [ l ] has given a proper 
extension of classical analysis, which he called nonstandard analysis. 
His theory is based on the general metamathematical result that 
there exist nonstandard models for the system R of real numbers. 
Such models of R may be constructed in the form of ultrapowers as 
defined by T. Frayne, D. Scott, and A. Tarski in [2]. The object of 
this paper is to apply Robinson's method in order to obtain a new 
proof of the Hahn-Banach extension theorem and in order to give a 
new and simple proof of a result about the existence of certain meas­
ures on Boolean algebras which was recently obtained by O. Nikod^m 
in [3; 4 ] . 

I t may be of interest to the reader to point out that the use of non­
standard arguments in the proof of the Hahn-Banach extension theo­
rem eliminates the use of Zorn's lemma. In fact, the validity of the 
Hahn-Banach extension theorem is a consequence of the apparently 
weaker hypothesis that every proper filter is contained in an ultra-
filter, i.e., the prime ideal theorem for Boolean algebras. I t seems 
likely, that conversely the Hahn-Banach extension theorem implies 
the prime ideal theorem for Boolean algebras. 

A more detailed presentation of the subject of this announcement 
will be contained in lecture notes on nonstandard analysis under 
preparation by the author. 

2. Nonstandard models of R. Let R denote the real number sys­
tem. Let D be an arbitrary set and let U be an ultrafilter on D. If 
A and B are two mappings of D into R, i.e., A1 BÇzDR, then we say 
that A =uB if and only if {n:nÇzD and A(n)~B(n) ) £ U . The rela­
tion A =VLB is easily seen to be an equivalence relation. The set 
DR/VL of all equivalence classes will be denoted by R* and the equiv­
alence class of a mapping A of D into R will be denoted by a. Thus 
i £ a . Finally, we define the algebraic operations in R* as follows: 
a+b — c if and only if there exist elements i G ö , B(~b and C £ c such 
that {n: n(ED and A (n) +B(n) = C(n)} £ U ; and a similar definition 
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for ab = c and a ̂  b. With these definitions -R* is a totally-ordered field 
and RQR*. If R^R*, then R* is non-archimedean and is a non­
standard model of R. In this case the following two subsets are intro­
duced. Mo is the set of all a(~R* such that | a\ <r for some rt-R. Then 
Mo is a ring and the elements of Mo are called the finite elements of 
R*. Mi is the set of all a £ i ? * such that \a\ <r for all rÇzR and r > 0 . 
The elements of Mi are called infinitesimals. Furthermore, Mi is a 
maximal ideal of Mo and Mo/'Mi is isomorphic to R. The homomor-
phism of Mo onto i? with kernel Mi will be called "standard part" 
and will be denoted by st. If a £ M o , then st(a) is the unique real 
number which is infinitely close to a. This homomorphism is order 
preserving. 

The terminology used in this section is taken from [ l ] , 

3. The Hahn-Banach extension theorem. In this section we shall 
sketch a proof of the Hahn-Banach extension theorem using non­
standard arguments. 

THEOREM (HAHN-BANACH). Let E be a real linear space and let p 
be a sublinear functional defined on E, i.e., a mapping p of E into R 
such that p(x+y) ^p(x) +p(y) for all x, yÇzE and p(tx)~tp(x) for all 
# £ E and all realt^O. If f is a real linear functional defined on a linear 
sub space G of E such that f{x) Sp(x) for all # £ G , then there exists a 
real linear functional F on E such that F(x)~f{x) for all x £ G and 
F(x) ^p(x) for all xGE. 

PROOF. Let {/n: nÇzD} be the family of all linear functionals which 
are defined on some linear subspace of E which contains G and which 
have the following properties: fn(oc) =ƒ(#) for all x £ G and fn(x) ^p(x) 
for all xÇzE for which fn(pc) is defined. I t is evident that DT*0. For 
every x Ç E w e denote by Dx the set of all indices nÇ~D such that the 
domain of fn contains x. I t follows from Banach's proof (see [5, p. 28]) 
that DX7^0 for all # £ E . Furthermore, the family \DX\XÇZE) of 
subsets of D has the finite intersection property, i.e., if #i, • • • , xn 

are elements of E, then V\1}sslDXi9^0. Indeed, apply Banach's con­
struction successively to the elements Xi, • • • , xn. Hence, there exists 
an ultrafilter U on D which contains the family {Dx: X(EE}. Let R* 
be the ultrapower DR/Vi. Then we define the following mapping ƒ of 
E into R*. If # £ E , then f(x) is that element of JR* which is deter­
mined by an element A of DB such that A(n)=fn(x) for all « G f t . 
Then it is easy to see that ƒ is a linear transformation of E into R* 
(consider R* as a vector space over R) and that ƒ has the following 
properties: (i) f(x) =f(x) for all x £ G and (ii) f(x) Sp(x) for all x £ £ . 
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From (ii) it follows that -~p(--x) Sf(x) ^p(x) for all x £ E , i.e., f(x) 
is finite for all x&E. Hence, F(x) =st(/(x)) is the required linear 
functional. This completes the proof of the theorem. 

REMARK. The proof shows that the ultrafilter U is fixed, i.e., there 
exists an element nÇ^D such that { » } £ [ / . Furthermore, there exists 
a one-to-one correspondence between the family of all ultrafilters on 
D containing the family {Dx: X £ £ } and the family of all extensions 
of ƒ satisfying the conditions of the theorem. 

4. A theorem of Nikodym. Let B be a. Boolean algebra. I t is well-
known that there does not always exist on B a strictly positive real-
valued finitely additive measure. Therefore, the following result, 
which was recently obtained by O. Nikodym in [3; 4] , is of interest. 

THEOREM (O. NIKODYM). For every Boolean algebra B there exists a 
totally ordered field F which is in general non-archimedean such that B 
admits a strictly positive F-valued finitely additive measure. 

PROOF. Let B be a Boolean algebra and let {ju„: wGDJ be the col­
lection of all real-valued measures on B such that juw(l) = 1 for all 
w£Z). For every 0 ^ a £ J 3 we denote by Da the set of all wGD such 
that iin(a) 5^0. I t is well known that D^0 for all (MaG-B (Stone's 
Theorem). Hence, the family of sets \Da\ 0 ^ a £ J 3 } has the finite 
intersection property. Let U be an ultrafilter on D which contains the 
family {#«: O^aG-B}. Let F be the ultrapower DR/U. Then F is a 
totally-ordered field, RQF and RT^F if and only if F is non-archi­
medean. We define now the following mapping # of B into F. If 
0 ^ a G J 3 , then p,{a) is that element of F which is determined by the 
element AÇ:DR which has the following property: A(n) =ixn(a) for 
all nÇzDa', and we define # (0)=0 . Then, by construction, # has the 
following properties: (i) #(#) = 0 if and only if a = 0, i.e., p is strictly 
positive and (ii) M(#Vb) = p,(a) + jl(b) whenever aA& = 0, i.e., jX is 
finitely-additive. This completes the proof of the theorem. 

REMARK. If B does not admit a strictly positive real-valued finitely 
additive measure, then the totally-ordered field F constructed in the 
proof of the preceding theorem is a proper extension of R and hence, 
fi(a) is infinitesimal for a t least one element O^a^B. 
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