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1. Introduction. Recently, A. Robinson in [1] has given a proper
extension of classical analysis, which he called nonstandard analysis.
His theory is based on the general metamathematical result that
there exist nonstandard models for the system R of real numbers.
Such models of R may be constructed in the form of ultrapowers as
defined by T. Frayne, D. Scott, and A. Tarski in [2]. The object of
this paper is to apply Robinson’s method in order to obtain a new
proof of the Hahn-Banach extension theorem and in order to give a
new and simple proof of a result about the existence of certain meas-
ures on Boolean algebras which was recently obtained by O. Nikodym
in [3; 4].

It may be of interest to the reader to point out that the use of non-
standard arguments in the proof of the Hahn-Banach extension theo-
rem eliminates the use of Zorn’s lemma. In fact, the validity of the
Hahn-Banach extension theorem is a consequence of the apparently
weaker hypothesis that every proper filter is contained in an ultra-
filter, i.e., the prime ideal theorem for Boolean algebras. It seems
likely, that conversely the Hahn-Banach extension theorem implies
the prime ideal theorem for Boolean algebras.

A more detailed presentation of the subject of this announcement
will be contained in lecture notes on nonstandard analysis under
preparation by the author.

2. Nonstandard models of R. Let R denote the real number sys-
tem. Let D be an arbitrary set and let U be an ultrafilter on D. If
A and B are two mappings of D into R, i.e., 4, BEDZE, then we say
that A =uB if and only if {n: n€D and A(n)=B(n)} €. The rela-
tion A=uyB is easily seen to be an equivalence relation. The set
DE/U of all equivalence classes will be denoted by R* and the equiv-
alence class of a mapping 4 of D into R will be denoted by a. Thus
A &a. Finally, we define the algebraic operations in R* as follows:
a-+b=c if and only if there exist elements A Ea, BEb and C&Ec such
that {#:nE€D and A(n)+B(n)=C(n)} €U; and a similar definition
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for ab=c and ¢ £b. With these definitions R* is a totally-ordered field
and RCR*, If R#R*, then R* is non-archimedean and is a non-
standard model of R. In this case the following two subsets are intro-
duced. M, is the set of all a & R* such that | ¢| <7 for some r&R. Then
M, is a ring and the elements of M, are called the finite elements of
R*. M is the set of all eER* such that |a| <r for all #&€R and r>0.
The elements of M, are called infinitesimals. Furthermore, M, is a
maximal ideal of M, and M,/ M, is isomorphic to R. The homomor-
phism of M, onto R with kernel M; will be called “standard part”
and will be denoted by st. If e & M,, then st(a) is the unique real
number which is infinitely close to ¢. This homomorphism is order
preserving.
The terminology used in this section is taken from [1].

3. The Hahn-Banach extension theorem. In this section we shall
sketch a proof of the Hahn-Banach extension theorem using non-
standard arguments.

TuaeorREM (HAHN-BANACH). Let E be a real linear space and let p
be a sublinear functional defined on E, i.e., a mapping p of E into R
such that p(x+y) S p(x) +p(y) for all x, yEE and p(ix) =ip(x) for all
xEE and all real t 20, If f is a real linear functional defined on a linear
subspace G of E such that f(x) S p(x) for all xEG, then there exists a
real linear functional F on E such that F(x)=f(x) for all xEG and
F(x) £p(x) for all xEE.

Proor. Let {f,: n€D} be the family of all linear functionals which
are defined on some linear subspace of E which contains G and which
have the following properties: f,(x) =f(x) for all *EG and f.(x) S p(x)
for all x& E for which f,(x) is defined. It is evident that D . For
every x& E we denote by D, the set of all indices #& D such that the
domain of f, contains x. It follows from Banach’s proof (see [5, p. 28])
that D, & for all x€E. Furthermore, the family {D,:x€E} of
subsets of D has the finite intersection property, i.e., if x1, + « *, %4
are elements of E, then N}.,D,,# . Indeed, apply Banach's con-
struction successively to the elements x1, - - -, x,. Hence, there exists
an ultrafilter 1 on D which contains the family {D,: x€E}. Let R*
be the ultrapower DE/11. Then we define the following mapping f of
E into R*. If xEE, then f(x) is that element of R* which is deter-
mined by an element 4 of D® such that 4(n)=Ff,(x) for all nED,.
Then it is easy to see that f is a linear transformation of E into R*
(consider R* as a vector space over R) and that f has the following
properties: (i) f(x) =f(x) for all *€G and (ii) f(x) Sp(x) for all xEE.
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From (ii) it follows that —p(—x) <f(x) Sp(x) for all xEE, i.e., f(x)
is finite for all x€E. Hence, F(x)=st(f(x)) is the required linear
functional. This completes the proof of the theorem.

REMARK. The proof shows that the ultrafilter Ul is fixed, i.e., there
exists an element &€ D such that {#} € U. Furthermore, there exists
a one-to-one correspondence between the family of all ultrafilters on
D containing the family {D,: x€E} and the family of all extensions
of f satisfying the conditions of the theorem.

4. A theorem of Nikodym. Let B be a Boolean algebra. It is well-
known that there does not always exist on B a strictly positive real-
valued finitely additive measure. Therefore, the following result,
which was recently obtained by O. Nikodym in [3; 4], is of interest.

TraeEOREM (O. NI1KODYM). For every Boolean algebra B there exists a
totally ordered field F which is in general non-archimedean such that B
admits a strictly positive F-valued finitely additive measure.

Proor. Let B be a Boolean algebra and let {p,n: nED} be the col-
lection of all real-valued measures on B such that u,(1)=1 for all
n&D. For every 0#£a& B we denote by D, the set of all #&D such
that u,(e) 0. It is well known that D & for all 0#a& B (Stone’s
Theorem). Hence, the family of sets {D,: 05%a€ B} has the finite
intersection property. Let U be an ultrafilter on D which contains the
family {D.:0%a€B}. Let F be the ultrapower D®/U. Then Fis a
totally-ordered field, RC F and R#F if and only if F is non-archi-
medean. We define now the following mapping f of B into F. If
07#a& B, then fi(a) is that element of F which is determined by the
element 4 €D® which has the following property: 4 (n) =u,(a) for
all n€D,; and we define f(0) =0. Then, by construction, f has the
following properties: (i) fi(a) =0 if and only if a=0, i.e., & is strictly
positive and (i) f(a\V/b)=pg(e)+4(b) whenever a AD=0, ie., § is
finitely-additive. This completes the proof of the theorem.

REMARK. If B does not admit a strictly positive real-valued finitely
additive measure, then the totally-ordered field F constructed in the
proof of the preceding theorem is a proper extension of R and hence,
fi(a) is infinitesimal for at least one element 0aE B.
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