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analogous fashion but lead to very messy formulae, which further­
more give no additional stable information. 

4. Finally a word concerning the proof of Theorem I. I t is a known 
result tha t when X = point, then KO{S(E)} =KO(SSn) is generated 
by 1 and y. (See [2]). Hence (2.1) proves the first statement of 
Theorem I whenever E is trivial. Now an inductive Meyer-Vietoris 
argument yields the general case. 
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The purpose of this note is to point out that certain Tauberian 
theorems follow immediately from some recent research of Lehto-
Virtanen and Bagemihl-Seidel. 

Let D denote the open unit disk, let C denote the unit circumfer­
ence, and let p(z\, £2) denote the non-Euclidean hyperbolic distance 
between the points Z\ and 22 in D. 

THEOREM. Suppose that f(z) = YLan^n and that n\an\ 
^M (n=l, 2, • • • ) for some constant M. Further, suppose that {zn} 
is a sequence of points in D converging to a point f in C with the prop­
erty that p(zn, zn+i)—>0 as n—>oo. Then, iff(zn)—^c as n—>oo, the series 
]C#„fn converges to the sum c. 

PROOF. The hypothesis implies that | / ' ( s ) | ^ t f / ( l - | s | ) . Con­
sequently, p(f(z))\dz\ ^2Md<r(z) holds for all 2 in D where p(f(z)) 
— I ƒ (z) I / ( I +1 f(z) 12) denotes the spherical derivative of ƒ and d<r(z) 
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= | dz\ / ( l — | z\2) denotes the hyperbolic element of length. From this 
we infer at once (see [2, Theorem 3]) that ƒ is normal in the sense of 
Lehto and Virtanen; and, invoking a theorem of Bagemihl and Seidel 
[l , Theorem 2], we conclude that ƒ has the angular limit c at f. 
The theorem now follows from Littlewood's Tauberian theorem for 
radial approach. 

The theorem contains the Hardy-Littlewood Tauberian theorem 
for curvilinear approach as a special case. 

I t is now obvious that one can formulate and prove a number of 
Tauberian theorems by making use of various known properties of 
normal functions. Conversely, known Tauberian theorems will some­
times suggest properties of normal functions. For example, the fact 
that a holomorphic function in D having a finite Dirichlet integral is 
normal yields at once an extension of a familiar Tauberian theorem. 

The author will discuss these matters in more detail elsewhere. 
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