GROUPS WITH INFINITE PRODUCTS
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If G is a group, then an infinite product on G is a function u: G*—H,
where G* is the set of sequences of elements of G, and H is some other
set. I call u assoctative if it satisfies all the associative laws of the form

u(xlrx%' ")xm"')
= #(x1x2 . e x'iz—l’ xi! .« .. xta-—ly DRI , xi” R xi"+l—1, . o . ).

Here juxtaposition denotes multiplication in G. Then the utter trivial-
ity of u follows from this trick:

X1XaX3 + *
= (®181%1) (w0o& 2% 121%2) (5% 3% 2% 101%9%3) - - *
= (%1%1) (w102Fo%1) (X100 5% 5F2E1) - - -
=1.1-1...,

Here %, denotes the inverse of x,, and 1 denotes the identity of G.

A form of this trick was noticed and used by B. Mazur [2]. An
example of another use is this.

Let C be a compact Hausdorff space. If >0, define C(«) to be the
space CX [0, &) with CXO0 identified to one point 0. Define £ to be
the set of all those functions f: C(1)—C(1) which can be extended to
fx: C(2)—C(1) where fx is a homeomorphism onto an open subset of
C(1), such that f(0)=0. Define T' to be the set of those homeomor-
phisms ¢: C(1)—>C(1) for which there is €>0 such that ¢ is the
identity on C(e)\J[C(1)—C(1—¢)].

If f and g belong to 2, define f~g to mean there exists ¢ &I such
that f=g¢, where the notation here for composition of maps is that
g2o(x) =¢(g(x)). It can be shown that f~yg if and only if there is
€>0 such that f| C(e) =¢g| C(e).

From this, one can deduce that the equivalence classes of Z under
the relation ~ form a group with multiplication induced by the com-
position of maps; this group will be called G.

Now if fi, fs, - -+, is a sequence of elements of Z, define
w(f1, fa, + + - ) to be the direct limit of the sequence of spaces and maps
S fa

cysci)ysca)y— - - -.
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One can show that u(fy, fe, + - - ) is determined up to homeomor-
phism by the equivalence classes of fi, fs, etc. The associativity, up to
homeomorphism, of u is simply the statement that the direct limit of
a directed set of spaces and maps is homeomorphic to the direct limit
of a cofinal subset.

The associativity trick then proves that the spaces u(fi, f2, * * *)
are all homeomorphic to each other; a particular such space can be
shown homeomorphic to C(«) or C(1).

It follows from the compactness of C, that if X is a space which
is the union of its open subsets U,, each of which is homeomorphic to
C(») in such a way that the odd points 0 coincide for all #, and if
every compact subset of X is contained in some U,, then X is homeo-
morphic to some space of the form u(fi, f2, - - - ). And hence X is
homeomorphic to C(«).

Taking C to be the (#—1)-sphere, one obtains the theorem of M.
Brown [1] that a monotone union of open n-cells is an open zn-cell.

This is perhaps the most conceptual way to understand my proof
[3] of several generalizations of Brown’s theorem, although if writ-
ten out in detail this method would be no shorter.
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