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Let X be a vector space of the finite dimension 7 over the field R of
the real numbers. For a (scalar or vector valued) function f defined
in a neighbourhood of x&X and differentiable in x, the operator

u d
Aof(x) = — f(x + Tu)
dr T
is defined and linear for every uEX.

We consider triples (¥, w, ¢) fulfilling the following conditions:

(i) Y is an open and connected subset of X such that A>0 and
y&E Y implies \y& Y.

(ii) w=w(y) is a continuous real-valued function on the closure ¥ of
Y that is homogeneous of degree 7, positive, and real analytic in ¥,
and vanishes on the boundary of Y. Furthermore, the Hessian
AJA log w(y) is nonsingular for yE Y.

Let ¢ be a given point in Y and denote by (%, v) the Hessian of
log w(y) at the point y=c. Without restriction we may assume that
w(c) =1 holds. Since ¢ (%, v) is nonsingular, the adjoint transformation
A* (with respect to ¢) is defined for every linear transformation 4 of
X. We form the group Z’ of those linear transformations W of X for
which y— Wy is a bijective map of Y onto itself and for which w(Wy)
=|| W]||w(y) holds identically for y& Y. Here || W|| denotes the absolute
value of the determinant of W. Let 2 be the subgroup of Z’ consisting
of the transformations W in 2’ for which W*&Z' holds. The triple
(Y, w, ¢) is called an Q-domain, if (i), (ii) hold and in addition

(iii) 2 acts transitively on Y.

On the other hand, we consider in X a Jordan algebra, i.e., a bi-
linear and commutative composition (x, y)—xy of X X X—X fulfilling

w*(xy) = x(ay)

for every x, y in X. Such a Jordan algebra, that is, the vector space
X together with the composition, shall be denoted by 4. For every
xEX the mapping y—xy determines a linear transformation L(x)
of X such that xy=L(x)y. Denote by 7(x, ¥) the trace of L(xy). Then
7(x, ¥) is a symmetric bilinear form on X. The Jordan algebra 4 is
called semi-simple if 7(x, v) is nonsingular. It is known, that a semi-
simple Jordan algebra contains a unit element c. Besides the linear
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transformation L(x) there is another, more important transforma-
tion P(x) introduced by N. Jacobson [1] that is defined by

y— P(x)y = 2x(xy) — x?y, ie., P(x) = 2L%x) — L(x?).
P(x) fulfills the following identity
1) P(P(x)y) = P(x)P(y) P(), %,y € X.

A first proof of this formula (in case of semi-simple real Jordan
algebras) can be found in Ch. Hertneck [5]. The proof for general
Jordan algebras was given independently by I. G. MacDonald [6].
Since P(c) is the identity mapping, the determinant |P(x)] is not
identically zero. The transformation P(x) is called the guadratic repre-
sentation of the Jordan algebra 4. Formula (1) shows for instance

P(xm) = Pm(x) form=1,2,.--.

However, P(x) is not a representation in the sense, that x—P(x) is a
homomorphism of A4 into the Jordan algebra of linear transforma-
tions.

To a given semi-simple Jordan algebra 4 we define a triple
(Y4, wa, ca), denoted by Q(A4), in the following way: ¢4 is the unit
element of 4, wa(x)= “P(ac)”l/2 and Y, is the connected component
of the set {x; wa(x) 0} containing the point c4.

Using certain results on Jordan algebras, in particular formula (1),
the theory of eigenvalues of a Jordan algebra (following ideas of E.
Artin) and the notion of the inverse in a Jordan algebra (due to N.
Jacobson [1], following a representation of E. Artin), we are able
to prove

THEOREM 1. Let A be a semi-simple Jordan algebra over R. Then
Q(A4) is an Q-domain in the vector space underlying A. The bilinear form
o associated with the Q-domain coincides with the bilinear form v of A.
Moreover, the transformations P(x), ‘P(x)] #0, belong to the group =
which is associated with the Q-domain.

In the course of the proof it turns out, that even the group gener-
ated by the transformations P(x) where x varies in some neighbour-
hood of the unitelement c4, acts transitively on Y.

Vice versa, let us start out with an @-domain (¥, w, ¢) in X. An
investigation of the geodesics with respect to the (in general not posi-
tive definite) metric given by the Hessian AjA; log w(y) leads to

THEOREM 2. Let (Y, w, ¢) be an Q-domain in X. Then there exists a
semi-simple Jordan algebra A in X such that (Y, w, ¢) =Q(4).

Furthermore we get
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THEOREM 3. The map A—Q(A) of the family of semi-simple real
Jordan algebras A is a bijection onto the family of Q-domains.

Itisimportant to know under which circumstances two semi-simple
Jordan algebras give rise to 2-domains that are not essentially differ-
ent. We call two Q-domains (Y, w, ¢) resp. (Y, ', ¢’) defined over the
vector space X resp. X’ of the same dimension, equivalent if there is
a bijective linear transformation V: X—X' such that

V=77, o' (Vy) = v-w(y) foryevy
holds, where « is a suitable real number. Then we get

THEOREM 4. Two Q-domains Q(A4) and Q(B) are equivalent if and
only if the Jordan algebras A and B are isomorphic.

Given a Jordan algebra A and f&A. Then one can define a new
multiplication in the underlying vector space X by

x Ly = 203) + y(af) — (x9)f.

X together with the composition L shall be denoted by A;. It is
known that 4, is a Jordan algebra. The quadratic representation of
Ay turns out to be P(x)P(f), where P(x) is the quadratic representa-
tion of 4.

Given a semi-simple Jordan algebra A4, let us consider the subset
X 4 of the underlying vector space X consisting of all points x for
which |P(x)] #%0. The connected component of the unitelement of 4
is an Q-domain (see Theorem 1). In addition we get

THEOREM 5. Let C be a connected component of X 4 and f&C, then
the triple (C,|P()||V2-wa, f~1) is the Q-domain, which is associated with
the semi-simple Jordan algebra Ay.

Here f~! denotes the inverse of f in the Jordan algebra 4. Combin-
ing Theorems 4 and 5 we have

THEOREM 6. There is a one-to-one correspondence between the equiv-
alence classes of connected components of X 4 (considered as Q-domains)
and the isomorphic classes of the Jordan algebras A; where fEX 4.

Special cases of 2-domains are the homogeneous domains of positiv-
ity (see [2;3;4], 0. S. Rothaus [7], Ch. Hertneck [5] and E. B. Vin-
berg [8]). It is known, that the map 4—Q(4) maps the family of
formal real Jordan algebras onto the family of homogeneous domains
of positivity. Here a Jordan algebra A4 is called formal real if x*+y2=0
implies x =y=0. This is equivalent to the notion of a compact Jordan
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algebra, i.e., a Jordan algebra, for which the bilinear form 7(x, ¥) is
positive definite. This gives an algebraic characterization of the Jor-
dan algebras associated with domains of positivity. However, there
is a different geometric characterization of the domains of positivity
in the family of Q-domains.

THEOREM 7. An Q-domain (Y, w, c) is an homogeneous domain of
poswvitity if and only if the set Y is convex.
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