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Let X be a vector space of the finite dimension n over the field R of 
the real numbers. For a (scalar or vector valued) function ƒ denned 
in a neighbourhood of xÇiX and differentiate in x, the operator 

u d 
&*f(%) = — ƒ(* + ru) 

dr 

is denned and linear for every w £ J . 
We consider triples (F , co, c) fulfilling the following conditions: 
(i) F is an open and connected subset of X such that X>0 and 

3 / £ F implies \y(~ Y. 
(ii) co=co(;y) is a continuous real-valued function on the closure Y of 

F that is homogeneous of degree w, positive, and real analytic in F, 
and vanishes on the boundary of F. Furthermore, the Hessian 
AJJAy log co(y) is nonsingular for yÇz F. 

Let c be a given point in F and denote by <x(u, v) the Hessian of 
log o)(y) a t the point y = c. Without restriction we may assume that 
co(c) = 1 holds. Since a(u, v) is nonsingular, the adjoint transformation 
A * (with respect to <r) is defined for every linear transformation A of 
X. We form the group 2 ' of those linear transformations W of X for 
which y—>Wy is a bijective map of F onto itself and for which o)(Wy) 
= || W\|co(y) holds identically for 3 /6F . Here || PF|| denotes the absolute 
value of the determinant of W. Let S be the subgroup of 2 ' consisting 
of the transformations W in 2 ' for which T^*£2 ' holds. The triple 
(F , co, c) is called an Q-domain, if (i), (ii) hold and in addition 

(iii) 2 acts transitively on F. 
On the other hand, we consider in X a Jordan algebra, i.e., a bi­

linear and commutative composition (x, y)—*xy of XXX—>X fulfilling 

x2(xy) = #(#2;y) 

for every #, y in X. Such a Jordan algebra, that is, the vector space 
X together with the composition, shall be denoted by A. For every 
xÇzX the mapping y—*xy determines a linear transformation L(x) 
of X such tha t xy = L(x)y. Denote by r(#, 3O the trace of L(xy). Then 
r(x, y) is a symmetric bilinear form on X. The Jordan algebra A is 
called semi-simple if r(#, y) is nonsingular. I t is known, that a semi-
simple Jordan algebra contains a unit element c. Besides the linear 
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transformation L(x) there is another, more important transforma­
tion P(x) introduced by N. Jacobson [ l ] that is defined by 

y->P(x)y = 2x(xy) - x2y, i.e., P(x) = 2L\x) - L(x2). 

P(x) fulfills the following identity 

(1) P(P(x)y) = P(x)P(y)P(x)9 x,yeX. 

A first proof of this formula (in case of semi-simple real Jordan 
algebras) can be found in Ch. Hertneck [5], The proof for general 
Jordan algebras was given independently by I. G. MacDonald [ó]. 
Since P(c) is the identity mapping, the determinant | JP (X) | is not 
identically zero. The transformation P(x) is called the quadratic repre­
sentation of the Jordan algebra A. Formula (1) shows for instance 

P(xm) = Pm(x) for m = 1, 2, • • • . 

However, P(x) is not a representation in the sense, that x—»P(x) is a 
homomorphism of A into the Jordan algebra of linear transforma­
tions. 

To a given semi-simple Jordan algebra A we define a triple 
{YA, O)A, CA), denoted by £2(^4), in the following way: CA is the unit 
element of A> O)A(OC) = \\P(x)\\1/2 and YA is the connected component 
of the set {x\ O)A(X)^0} containing the point CA* 

Using certain results on Jordan algebras, in particular formula (1), 
the theory of eigenvalues of a Jordan algebra (following ideas of E. 
Artin) and the notion of the inverse in a Jordan algebra (due to N. 
Jacobson [ l ] , following a representation of E. Artin), we are able 
to prove 

THEOREM 1. Let A be a semi-simple Jordan algebra over R. Then 
ti(A) is an Q,-domain in the vector space underlying A. The bilinear form 
a associated with the Q,-domain coincides with the bilinear form T of A. 
Moreover', the transformations P(x), \P(x)\ 5^0, belong to the group S 
which is associated with the Q-domain. 

In the course of the proof it turns out, that even the group gener­
ated by the transformations P(x) where x varies in some neighbour­
hood of the unitelement CA, acts transitively on Y A» 

Vice versa, let us start out with an fl-domain (F , co, c) in X. An 
investigation of the geodesies with respect to the (in general not posi­
tive definite) metric given by the Hessian AJJAJ log o)(y) leads to 

THEOREM 2. Let (F , a>, c) be an Q-domain in X. Then there exists a 
semi-simple Jordan algebra A in X such that (F , co, c) = Q,(A). 

Furthermore we get 
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THEOREM 3. The map A—>ti(A) of the family of semi-simple real 
Jordan algebras A is a bisection onto the family of Çl-domains. 

I t is important to know under which circumstances two semi-simple 
Jordan algebras give rise to Q-domains that are not essentially differ­
ent. We call two B-domains (F , co, c) resp. (F ' , <o', c') denned over the 
vector space X resp. X' of the same dimension, equivalent if there is 
a bijective linear transformation V: X—*X' such that 

F ' = VY, to'(Vy) = 7-«(y) for y G F 

holds, where 7 is a suitable real number. Then we get 

THEOREM 4. Two Q-domains il(A) and 12(5) are equivalent if and 
only if the Jordan algebras A and B are isomorphic. 

Given a Jordan algebra A and ƒ £ -4 . Then one can define a new 
multiplication in the underlying vector space X by 

x -L y = x(yf) + y(xf) - (xy)f. 

X together with the composition _L shall be denoted by A/. I t is 
known that A/ is a Jordan algebra. The quadratic representation of 
A/ turns out to be P(x)P(f), where P(x) is the quadratic representa­
tion of A. 

Given a semi-simple Jordan algebra A, let us consider the subset 
XA of the underlying vector space X consisting of all points x for 
which J P(x) I T* 0. The connected component of the unitelement of A 
is an fi-domain (see Theorem 1). In addition we get 

THEOREM 5. Let C be a connected component of XA and fÇ.Cy then 
the triple (C, | |P( / ) | | 1 / 2-COA, f~~l) is the Q-domain> which is associated with 
the semi-simple Jordan algebra Af. 

Here f~l denotes the inverse of ƒ in the Jordan algebra A. Combin­
ing Theorems 4 and 5 we have 

THEOREM 6. There is a one-to-one correspondence between the equiv­
alence classes of connected components of XA {considered as 0,-domains) 
and the isomorphic classes of the Jordan algebras A/ where fÇ^XA. 

Special cases of S2-domains are the homogeneous domains of positiv-
ity (see [2; 3; 4 ] , O. S. Rothaus [7], Ch. Hertneck [5] and E. B. Vin-
berg [8]). I t is known, that the map A-^Ü{A) maps the family of 
formal real Jordan algebras onto the family of homogeneous domains 
of positivity. Here a Jordan algebra A is called formal real if x2+y2 = 0 
implies x = y = 0. This is equivalent to the notion of a compact Jordan 
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algebra, i.e., a Jordan algebra, for which the bilinear form r(x, y) is 
positive definite. This gives an algebraic characterization of the Jor­
dan algebras associated with domains of positivity. However, there 
is a different geometric characterization of the domains of positivity 
in the family of Q-domains. 

THEOREM 7. An ti-domain (F , co, c) is an homogeneous domain of 
posivitity if and only if the set Y is convex. 
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