AN EXPANSION FORMULA FOR DIFFERENTIAL EQUATIONS

BY KUO-TSAI CHEN

Communicated by Deane Montgomery, March 2, 1962

Denote by $z = (z^1, \dots, z^n)$ the coordinates of the *n*-dimensional complex space. If $m = (m_1, \dots, m_n)$ is an *n*-tuple of nonnegative integers, then we write $z^m = (z^1)^{m_1} \dots (z^n)^{m_n}$. Any polycylinder mentioned in this paper will have its center at the origin.

Let f(t, z) depend on the complex variables z and a parameter t over a measurable set I in a measure space with measure μ . We say that f(t, z) is dominatedly integrable over I for z in a polycylinder U, if the following conditions are satisfied:

- (a) For a.e. (almost every) value of the parameter t in I, f(t, z) is holomorphic in U.
- (b) The expansion $\sum a_m(t)z^m$ of f(t, z) is such that each coefficient a_m is integrable over I.
 - (c) The series $\sum \int_I |a_m(t)| d\mu z^m$ converges in U.

It can be easily shown that $F(z) = \int_I f(t, z) d\mu$ is holomorphic in U, and this integration commutes with partial differentiation with respect to z.

DEFINITION. We say that $A(t) = \sum a^i(t, z)\partial/\partial z^i$, t being a real variable, is a t.d.i.t. (time dependent infinitesimal transformation) if there exists a polycylinder U such that, for z in U, each $a^i(t, z)$ is dominatedly integrable in the sense of Lebesgue over any finite interval I.

DEFINITION. For f(z) holomorphic about the origin, we define $T^*(A; t, t_0)f$, or simply $T^*(t)f$, to be the sum function of the series

$$T_0^*(t)f + \cdots + T_r^*(t)f + \cdots$$

where $T_0^*(t)f = f$ and, for r > 0, $T_r^*(t)f = \int_{t_0}^t T_{r-1}^*(s)A(s)fds$. Our main purpose is to prove the formula

(1)
$$(T^*(t)f)(z_0) = f(T(t)z_0),$$

where $z = T(t)z_0$ denotes the solution of the system of differential equations $dz^i/dt = a^i(t, z)$ with the initial condition $z(t_0) = z_0$.

By direct computation, it is verified that

$$\frac{d}{dt} \sum_{i=0}^{r} (T_i^*(t)f)(T_{r-i}^*(t)g) = dT_r^*(t)(fg)/dt.$$

Consequently, if $T^*(t)f$ and $T^*(t)g$ both converge absolutely in a

neighborhood of the origin, then

$$T^*(t)(fg) = (T^*(t)f)(T^*(t)g).$$

In other words, $T^*(t)$ can be looked upon as an endomorphism of the ring of the functions holomorphic about the origin.

For $f(z) = \sum a_m z^m$ and $g(z) = \sum b_m z^m$ holomorphic about the origin, we write $f \ll g$ when $|a_m| \leq b_m$ for all m. For two t.d.i.t. A(t) and B(t), we write $A(t) \ll B(t)$ when $A(t)z^i \ll B(t)z^i$, $i=1, \cdots, n$, for a.e. value of t.

We obtain, in a rather straightforward manner, the following result:

THEOREM 1. If $A(t) \ll B(t)$ and if $f \ll g$, then, for $t > t_0$, the existence of $T^*(B; t, t_0)g$ in a polycylinder U will imply that of $T^*(A; t, t_0)f$ in the same polycylinder. Moreover

$$T^*(A; t, t_0)f \ll T^*(B; t, t_0)g.$$

It is known that, if X is an infinitesimal transformation (holomorphic about the origin and independent on the time t), then $T^*(X;t,t_0)f = (\exp(t-t_0)X)f$ exists. By constructing a suitable X with $A(t) \ll X$, we are led to the next proposition:

THEOREM 2. If $|A(t)z^i| \leq M$ for a.e. value of t and for z in a given polycylinder of radius R, then $T^*(t)$ f exists and is holomorphic about the origin provided the number $|t-t_0|M/R$ is sufficiently small.

Hereafter we shall assume that A(t) satisfies the conditions of the above theorem. For our purpose, this assumption is almost superficial, because $T^*(t_1)$ remains the same when A(t) is subject to any alteration for values of t beyond the interval between t_0 and t_1 .

Let z_0 be any point sufficiently close to the origin. Denote by $\alpha_{z_0}(t)$ the path given by

$$z(\alpha_{z_0}(t)) = (T^*(t)z)(z_0).$$

Since $T^*(t)$ is an endomorphism of the ring of the holomorphic functions about the origin, we obtain, for any polynomial f of z,

(2)
$$f(\alpha_{z_0}(t)) = (T^*(t)f)(z_0).$$

By passing to limit, the above identity also holds for any function f holomorphic about the origin. It follows that

$$dz^{i}(\alpha_{z_{0}}(t))/dt = (T^{*}(t) A(t)z^{i})(z_{0})$$

$$= (T^{*}(t) a^{i}(t, z))(z_{0})$$

$$= a^{i}(t, z(\alpha_{z_{0}}(t))).$$

In short, $\alpha_{z_0}(t) = T(t)z_0$. Hence (1) follows from (2).

In order to indicate some application of the above results, we consider again the system of differential equations $dz^i/dt = a^i(t, z)$ represented by the t.d.i.t. A(t). Denote by $a_r^i(t, z)$ the component of degree r in the expansion of the function $a^i(t, z)$ about the origin, and write $A_r(t) = \sum_{i=1}^n a_r^i(t, z) \partial/\partial z^i$. Then we study local properties of the solutions of the system of differential equations through the power series expansion of $T^*(t)z$ in z.

Example. Consider the system of the differential equations

(3)
$$dx/dt = -y + f(x, y),$$
$$dy/dt = x + g(x, y),$$

where f and g are holomorphic with their respective expansions of order at least 2 about (x, y) = (0, 0). Set $z = e^{-it}(x + iy)$ and $\bar{z} = e^{it}(x - iy)$. Then

(4)
$$dz/dt = e^{-it}h(e^{it}z, e^{-it}\bar{z}),$$

$$d\bar{z}/dt = e^{it}\bar{h}(e^{-it}\bar{z}, e^{it}z),$$

where h(x+iy, x-iy) = f(x, y) + ig(x, y), and \bar{h} is obtained from h by replacing, in the power series expansion of h, each coefficient by the conjugate. Corresponding to (4), we have the t.d.i.t.

$$A(t) = e^{-it}h(e^{it}z, e^{-it}\bar{z})\partial/\partial z + e^{it}h(e^{-it}\bar{z}, e^{it}z)\partial/\partial\bar{z}.$$

It is clear that $A_0(t) = A_1(t) = 0$ and $\int_0^{2\pi} A_2(t) dt = 0$. The first nonvanishing component of the power series expansion of $T^*(A; 2\pi, 0)z - z$ has degree 3 and is equal to

$$\left\{ \int_{0}^{2\pi} A_{3}(s)ds + \int_{0}^{2\pi} \int_{0}^{s} A_{2}(s) A_{2}(s') ds ds' \right\} z.$$

Write

$$A_3(t) = e^{-it}(\cdots + ke^{it}z^2\bar{z} + \cdots)\partial/\partial z + e^{it}(\cdots + \bar{k}e^{-it}z\bar{z}^2 + \cdots)\partial/\partial z.$$

Then $\int_0^{2\pi} A_3(s) dsz = 2\pi kz^2\bar{z}$. On the other hand, we write

$$A_{2}(t) = e^{-it}(ae^{2it}z^{2} + 2bz\bar{z} + ce^{-2it}\bar{z}^{2})\partial/\partial z + e^{it}(\bar{a}e^{-2it}\bar{z}^{2} + 2\bar{b}z\bar{z} + \bar{c}e^{2it}z^{2})\partial/\partial\bar{z},$$

and obtain

$$\int_{0}^{2\pi} \int_{0}^{s} A_{2}(s) A_{2}(s') ds ds' z = -4\pi i z^{2} \bar{z} (2b\bar{b} - ab + c\bar{c}/3).$$

344 K.-T. CHEN

Therefore

$$T^*(A; 2\pi, 0)z = z + 2\pi z^2 \bar{z}(k - 2i(2b\bar{b} - ab + c\bar{c}/3)) + \cdots$$

Now we restrict ourselves to the case where the system (3) is real. The solution of the system with the initial condition that $x=x_0$, $y=y_0$ when t=0, can be given through the formula

$$x + iy = e^{it}z = e^{it}(T^*(A; t, 0)z)_{z=z_0}$$

provided $z_0 = x_0 + iy_0$ is sufficiently close to 0. Let (x_1, y_1) be the point reached by the integral curve when $t = 2\pi$. Then

$$x_1 + iy_1 = (T^*(A; 2\pi, 0)z)_{z=z_0}$$

= $z_0 + 2\pi z_0^2 \bar{z}_0 (k - 2i(2b\bar{b} - ab + c\bar{c}/3)) + \cdots$

If $r_0^2 = x_0^2 + y_0^2$, then

$$x_1^2 + y_1^2 = z_0 \bar{z}_0 + 4\pi (\operatorname{Re} k - 2\operatorname{Im}(ab))(z_0 \bar{z}_0)^2 + \cdots$$

= $r_0^2 + Kr_0^4 + \cdots$

Hence we conclude that the integral curve of the autonomous system (3), after a time lapse of 2π , will carry every point in a sufficiently small neighborhood of (0, 0) in the real (x, y)-plane farther away or closer to (0, 0) according as K>0 or K<0.

BIBLIOGRAPHY

- 1. K. T. Chen, Formal differential equations, Ann. of Math. 73 (1961), 110-133.
- 2. ——, Decomposition of differential equations, Math. Ann. 146 (1962), 263-278.
- 3. S. Lefschetz, Differential equations: geometric theory, Interscience, New York, 1957.
- 4. J. K. Hale, Integral manifolds of perturbed differential systems, Ann. of Math. 73 (1961), 496-531.

INSTITUTE FOR ADVANCED STUDY