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Let P(Mf G) be a principal fiber bundle with Lie structure group G 
and base M, with differentiability of class C00 for all manifolds and 
mappings involved in its definition. Given a connection of class C00 

in P , the holonomy group <£(#) with reference point x £ P is defined as 
the subgroup of G consisting of all elements a £ G such that x and 
x-a can be joined by a horizontal curve in P . Here, a horizontal curve 
usually means either a piecewise C^-curve with horizontal tangent vec­
tors or a piecewise C°°-curve with horizontal tangent vectors. In fact, 
for any specified degree of differentiability k, l^k^ <*>, we can use 
piecewise Cfc-curves exclusively thus defining the holonomy group 
$k(x) which depends presumably on k. Of course, it is evident that 
* i (x )3*2(x)D • • • D*oo(x). 

We asked ourselves whether these holonomy groups are the same 
or not, and, as far as we know, there has not been any record concern­
ing this question. One might think that approximation of piecewise 
O-curves by piecewise C°°-curves will settle this question, but this 
method does not seem to work too easily in view of the fact that a 
Lie group can admit a Lie subgroup of lower dimension which is every­
where dense. 

We present here a proof of 

THEOREM. 4>I(X) =<£>00(X). 

We follow the terminologies of [2] in which piecewise C^-curves 
are used exclusively. Let P(x) be the set of all points in P which can 
be joined to x by a horizontal piecewise C°°-curve. I t is known that 
P(x) is a subbundle of P with structure group ^ ( x ) [2, p. 37]. We 
define a distribution A on P by Ax= Tx(P(x)) for each x £ P . We can 
prove that A is differentiate. I t is involutive, since for each point x 
of P , P(x) is an integral manifold of A through x. It is also easy to 
show that P(x) is indeed a maximal integral manifold of A through x. 
(Remark that the distribution A considered in [2, p. 39] is the restric­
tion of our distribution A here to P(x) for a fixed x.) Now let a £ $ i ( x ) . 
This means that there is a horizontal piecewise C^-curve x(t) such that 
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x(0)=x and x(l)~x-a. From the lemma below, it follows that the 
curve x(t) lies entirely in P(x) so that x-aÇ.P(x). But every point of 
P(x) which lies in the same fiber as x is of the form x-b with some 
oG*oo(x). Thus b and hence a = b> proving that a£$oo(#). 

LEMMA. Let A be an involutive C™-distribution on a C°°-manifold. 
Suppose x(t)> O^t^l, is a piecewise O-curve whose tangent vectors 
(where they exist) belong to A. If x(0) is in a maximal integral manifold 
W of A, then the curve x(t) lies entirely in W. 

PROOF. We may assume that x(t) is a C^curve. Take a local co­
ordinate system (x1, • • • , xn) around the point x(0) such that 
d/dx1, • • • , d/dxry r = dim A, form a local basis for A [l , p. 92], For 
small values of /, say, 0 ^ £ < € , x(t) can be expressed by xi^=xi(t)1 

l^i^n, and its tangent vectors are given by ]C?-i (dxi/dt)(d/dxi). 
By assumption, we have dx^dt^Q for r + l^i^n. Thus x*(0=#K0) 
for r + l^i^-n, so that x(t), OSKe, lies in the slice through x(0) 
and hence in W. Now by the standard continuation argument, we see 
that the entire curve x(t), OrgJ^ l , lies in W. 

COROLLARY. The restricted holonomy groups <£>?(x) and $*(;*;) coin­
cide with each other. 

The restricted holonomy group $l(x) is the subgroup of $k(x) con­
sisting of all elements a £ G such that x and x-a can be joined by a 
horizontal piecewise Cfc-curve in P whose projection on M is (con­
tinuously) homotopic to 0. I t is known that for k~ 1 and <*> [2, p. 32] 
$l(x) is nothing but the arcwise component of the identity of the 
group $k(x) (more precisely, $£(#) is the set of all elements of $k(x) 
which can be joined by a continuous curve in G which lies entirely in 
$k(x)). Since 3>i(x) =$oo(x), it is then clear that $?(x) =$>(20(x). 

REMARK. In the case where P (M, G) is a real analytic bundle with 
an analytic connection, we can still define the holonomy group <£«(#) 
by using only piecewise analytic curves. Since we can develop the 
results used from [2] in the above discussion by using piecewise 
analytic curves only, it is clear that $o,(x) =<I>i(x) and $°(x) ==3>?(x). 
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